Microdevices

Overview

Our research is focused on designing and building hybrid materials and devices. Microscale soft biological constructs, which retain their unique biological functionalities, are being interfaced with robust synthetic components to develop two distinct technologies: (1) Active bionanomaterials and (2) Quantitative pharmacological devices.


Muscle on a chip

Primary Investigator: Anna Grosberg, Ph.D

The “heart on a chip” is a microdevice that encapsulates multiple pieces of laminar muscle for in vitro studies of tissue contractility, structural properties, and electrophysiological function (Grosberg A, et al. “Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip.” Lab Chip, 2011). The design of such microdevices will give researches and companies an ability to perform tissue scale in vitro experiments to test their cell’s function and/or the effect of pharmacological agents. We are currently working on integrating the “heart on a chip” with other muscle types including stem-cell derived myocytes. Our design efforts are greatly enhanced by our lab’s variety of tools ranging from an optical mapping system and fluorescent microscopes to access to microfab facilities and the muscular thin film technology.

Anya_HeartOnChipMovie.gif

The movie shows a 6 film “heart on a chip”, blue – flat film outline, red – projection tracking


Higher throughput muscle on a chip

Primary Investigator: Ashutosh Agarwal, Ph.D

We are engineering cardiac and vascular smooth muscle cells into spatially organized microtissues on laser cut sub millimeter sized elastomer thin films and hydrogel thin films to give rise to large scale arrays of ‘Muscular Thin Films’ (MTFs) on a chip. The laser cutting procedure is also being employed to batch produce multiple chips in a reproducible and potentially scalable manner. Finally, these chips are being integrated into microfluidic devices to permit high throughput multiplexed analyses. We envision this in vitro technology to serve as an effective pre-clinical screen and hence greatly shorten the timeline and reduce the costs associated with the development of medical therapeutics and products.


Cardiac valve on a chip

Primary Investigator: Kartik Balachandran, Ph.D

We are also interested in developing combinatory “organ on a chip” devices, and one of our research thrusts in this direction is the development of a valve on a chip. Our objective is to design a valve system with neural input that recapitulates the function of a valve in a scaled down on-chip device. This research thrust is motivated from recent secondary valvulotoxic effects of neurological drugs such as diet pills (Fenfluramine-Phentermine) and anti-depressants. We aim to use this device for high throughput testing of neurological and valve function in response to various pharmacological agents.
Grp_photo_Jan 2014_305W_230H

What's New

Thank you to our Summer Students! August 16th, 2017

Thank you to all the undergraduate students who spent time working in the lab over the summer. We wish you all the best this school year!

 

Jenny Wang, United States Military Academy at West Point
Daniel Gray, United States Military Academy at West Point
Nikita Pereverzin, United States Military Academy at West Point
Kathryn Dula, United States Military Academy at West Point
Daniel Drennan, Nicholls State University
Michael Ferris, James Madison University
Karla Rivera, Barry University
John Doyle, University of Massachusetts at Lowell
Madeleine Dahl, Salem State University
Nikita Budnik, McGill University
Karaghen Hudson, Harvard University
Sayo Eweje, Harvard University
Michael Peters, Harvard University
Gabriela Berner, Harvard University

Welcome Dr. Ardoña! August 15th, 2017

The DBG would like to extend a warm welcome to our newest postdoctoral fellow, Dr. Herdeline Ardoña. Herdeline recently completed her Ph.D. in Chemistry at Johns Hopkins University,  where she was a part of Prof. Tovar’s lab.  Welcome, Herdeline!

Welcome Dr. Liu! June 23rd, 2017

The DBG would like to extend a warm welcome to our newest postdoctoral fellow, Dr. Qihan Liu. Qihan completed his Ph.D. in Prof. Zhigang Suo’s lab here at Harvard University, where he focused on the mechanics and physics of soft materials.  Welcome, Qihan!

Farewell Jack! June 16th, 2017

The DBG would like to wish Jack Zhou all the best as he leaves us for his next adventure – Medical School. Congratulations Jack!

The DBG welcomes the Orientation and Reach-Back Training class of the U.S. Army May 22nd, 2017

The DBG had the pleasure of hosting the Orientation and Reach-Back Training (ORBT) training class of the U.S. Army Research, Development and Engineering Command (RDECOM) Field Assistance in Science and Technology (FAST) program on May 17, 2017. ORBT is a multi-week mission overview program for senior-level Army officers, non-commissioned officers and Department of the Army civilians on the mechanisms for identifying and resolving technology capability gaps for units in their area of operation. The class visit to Professor (Lieutenant Colonel, Reserves) Parker’s Lab is their only visit to a Lab outside the Department of Defense.

The class met with DBG veterans and attended presentations on Stronger, Tougher, and Lighter Soldier Protection Systems; Nanofiber Scaffolds for Wound Healing/Dressings; Traumatic Brain Injury – Understanding Disease Mechanisms; Fibrous Scaffolds for Tissue Engineered Foods; Cells as Engineering Materials – the Cyborg Ray Project; Cuttlefish Inspired Camouflage; and our unique program for embedding Artists-In- Residence in the Lab.

Guests included members from the U.S. Army Research, Development, and Engineering Command (RDECOM); U.S. Army Engineer Research and Development Center (ERDC); U.S. Army Corps of Engineers; Army Research Laboratory; and RDECOM Research, Development and Engineering Centers.

Pictured below are (clockwise from bottom left): DBG Artist-in- Residence Karaghen Hudson (Harvard Class of 2018); Ms. Valerie Carney (ERDC); Dr. Aimee Poda (ERDC); Dr. (Colonel, Reserves) Steve Hart (RDECOM); Veteran and Program Coordinator John Laursen (Army Retired); Dr. Jerry Ballard (ERDC); Mr. Nathan Frantz (US Army Corps of Engineers); Visiting Scholar and Brigadier General Michael D. Phillips (USA Retired); Dr. Samantha Chambers RDECOM Science Advisor to the XVIII Airborne Corps; and Lieutenant Colonel Jovanna Nelson.