Publications

2011
39 -, Alford PW, Dabiri BE, Goss JA, Hemphill MA, Brigham MD, and Parker KK. 2011. “Blast-induced phenotypic switching in cerebral vasospasm.” Proceedings Of The National Academy Of Sciences Of The United States Of America, 108, 31, Pp. 12705-12710. Publisher's VersionAbstract
Vasospasm of the cerebrovasculature is a common manifestation of blast-induced traumatic brain injury (bTBI) reported among combat casualties in the conflicts in Afghanistan and Iraq. Cerebral vasospasm occurs more frequently, and with earlier onset, in bTBI patients than in patients with other TBI injury modes, such as blunt force trauma. Though vasospasm is usually associated with the presence of subarachnoid hemorrhage (SAH), SAH is not required for vasospasm in bTBI, which suggests that the unique mechanics of blast injury could potentiate vasospasm onset, accounting for the increased incidence. Here, using theoretical and in vitro models, we show that a single rapid mechanical insult can induce vascular hypercontractility and remodeling, indicative of vasospasm initiation. We employed high-velocity stretching of engineered arterial lamellae to simulate the mechanical forces of a blast pulse on the vasculature. An hour after a simulated blast, injured tissues displayed altered intracellular calcium dynamics leading to hypersensitivity to contractile stimulus with endothelin-1. One day after simulated blast, tissues exhibited blast force dependent prolonged hypercontraction and vascular smooth muscle phenotype switching, indicative of remodeling. These results suggest that an acute, blast-like injury is sufficient to induce a hypercontraction-induced genetic switch that potentiates vascular remodeling, and cerebral vasospasm, in bTBI patients.
Blast-induced phenotypic switching in cerebral vasospasm
38 -, Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Bischoff J, Aikawa E, Levine RA, and Parker KK. 2011. “Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve.” Proceedings of the National Academy of Sciences, 108, 50, Pp. 19943-19948. Publisher's VersionAbstract
Endothelial-mesenchymal transformation (EMT) is a critical event for the embryonic morphogenesis of cardiac valves. Inducers of EMT during valvulogenesis include VEGF, TGF-β1, and wnt/β-catenin (where wnt refers to the wingless-type mammary tumor virus integration site family of proteins), that are regulated in a spatiotemporal manner. EMT has also been observed in diseased, strain-overloaded valve leaflets, suggesting a regulatory role for mechanical strain. Although the preponderance of studies have focused on the role of soluble mitogens, we asked if the valve tissue microenvironment contributed to EMT. To recapitulate these microenvironments in a controlled, in vitro environment, we engineered 2D valve endothelium from sheep valve endothelial cells, using microcontact printing to mimic the regions of isotropy and anisotropy of the leaflet, and applied cyclic mechanical strain in an attempt to induce EMT. We measured EMT in response to both low (10%) and high strain (20%), where low-strain EMT occurred via increased TGF-β1 signaling and high strain via increased wnt/β-catenin signaling, suggesting dual strain-dependent routes to distinguish EMT in healthy versus diseased valve tissue. The effect was also directionally dependent, where cyclic strain applied orthogonal to axis of the engineered valve endothelium alignment resulted in severe disruption of cell microarchitecture and greater EMT. Once transformed, these tissues exhibited increased contractility in the presence of endothelin-1 and larger basal mechanical tone in a unique assay developed to measure the contractile tone of the engineered valve tissues. This finding is important, because it implies that the functional properties of the valve are sensitive to EMT. Our results suggest that cyclic mechanical strain regulates EMT in a strain magnitude and directionally dependent manner.
Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve
37 -, Grosberg A, Alford PW, McCain ML, and Parker KK. 2011. “Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip.” Lab Chip, 11, 24, Pp. 4165-4173. Publisher's VersionAbstract
Traditionally, muscle physiology experiments require multiple tissue samples to obtain morphometric, electrophysiological, and contractility data. Furthermore, these experiments are commonly completed one at a time on cover slips of single cells, isotropic monolayers, or in isolated muscle strips. In all of these cases, variability of the samples hinders quantitative comparisons among experimental groups. Here, we report the design of a "heart on a chip" that exploits muscular thin film technology--biohybrid constructs of an engineered, anisotropic ventricular myocardium on an elastomeric thin film--to measure contractility, combined with a quantification of action potential propagation, and cytoskeletal architecture in multiple tissues in the same experiment. We report techniques for real-time data collection and analysis during pharmacological intervention. The chip is an efficient means of measuring structure-function relationships in constructs that replicate the hierarchical tissue architectures of laminar cardiac muscle.
Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip.
36 -, Pong T, Adams WJ, Bray MA, Feinberg AW, Sheehy SP, Werdich AA, and Parker KK. 2011. “Hierarchical architecture influences calcium dynamics in engineered cardiac muscle.” Publisher, 236, 3, Pp. 366-373. Publisher's VersionAbstract
Changes in myocyte cell shape and tissue structure are concurrent with changes in electromechanical function in both the developing and diseased heart. While the anisotropic architecture of cardiac tissue is known to influence the propagation of the action potential, the influence of tissue architecture and its potential role in regulating excitation-contraction coupling (ECC) are less well defined. We hypothesized that changes in the shape and the orientation of cardiac myocytes induced by spatial arrangement of the extracellular matrix (ECM) affects ECC. To test this hypothesis, we isolated and cultured neonatal rat ventricular cardiac myocytes on various micropatterns of fibronectin where they self-organized into tissues with varying degrees of anisotropy. We then measured the morphological features of these engineered myocardial tissues across several hierarchical dimensions by measuring cellular aspect ratio, myocyte area, nuclear density and the degree of cytoskeletal F-actin alignment. We found that when compared with isotropic tissues, anisotropic tissues have increased cellular aspect ratios, increased nuclear densities, decreased myocyte cell areas and smaller variances in actin alignment. To understand how tissue architecture influences cardiac function, we studied the role of anisotropy on intracellular calcium ([Ca(2+)](i)) dynamics by characterizing the [Ca(2+)](i)-frequency relationship of electrically paced tissues. When compared with isotropic tissues, anisotropic tissues displayed significant differences in [Ca(2+)](i) transients, decreased diastolic baseline [Ca(2+)](i) levels and greater [Ca(2+)](i) influx per cardiac cycle. These results suggest that ECM cues influence tissue structure at cellular and subcellular levels and regulate ECC.
Hierarchical architecture influences calcium dynamics in engineered cardiac muscle.
35 -, McCain ML, and Parker KK. 2011. “Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function.” Pflügers Archiv - European Journal of Physiology, 462, 1, Pp. 89–104. Publisher's VersionAbstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease, requiring cardiac myocytes to be mechanically durable and capable of fusing a variety of environmental signals on different time scales. During physiological growth, myocytes adaptively remodel to mechanical loads. Pathological stimuli can induce maladaptive remodeling. In both of these conditions, the cytoskeleton plays a pivotal role in both sensing mechanical stress and mediating structural remodeling and functional responses within the myocyte.
Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function
34 -, Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, and Parker KK. 2011. “Nanowired three-dimensional cardiac patches.” Nature Nanotechnology, 6, 11, Pp. 720-725. Publisher's VersionAbstract
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds1,2,3. These biomaterials, which are usually made of either biological polymers such as alginate4 or synthetic polymers such as poly(lactic acid) (PLA)5, help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit6. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Nanowired three-dimensional cardiac patches
33 -, Hemphill MA, Dabiri BE, Gabriele S, Kerscher L, Franck C, Goss JA, Alford PW, and Parker KK. 2011. “A possible role for integrin signaling in diffuse axonal injury.” PLOS ONE, 6, 7, Pp. e22899. Publisher's VersionAbstract
Over the past decade, investigators have attempted to establish the pathophysiological mechanisms by which non-penetrating injuries damage the brain. Several studies have implicated either membrane poration or ion channel dysfunction pursuant to neuronal cell death as the primary mechanism of injury. We hypothesized that traumatic stimulation of integrins may be an important etiological contributor to mild Traumatic Brain Injury. In order to study the effects of forces at the cellular level, we utilized two hierarchical, in vitro systems to mimic traumatic injury to rat cortical neurons: a high velocity stretcher and a magnetic tweezer system. In one system, we controlled focal adhesion formation in neurons cultured on a stretchable substrate loaded with an abrupt, one dimensional strain. With the second system, we used magnetic tweezers to directly simulate the abrupt injury forces endured by a focal adhesion on the neurite. Both systems revealed variations in the rate and nature of neuronal injury as a function of focal adhesion density and direct integrin stimulation without membrane poration. Pharmacological inhibition of calpains did not mitigate the injury yet the inhibition of Rho-kinase immediately after injury reduced axonal injury. These data suggest that integrin-mediated activation of Rho may be a contributor to the diffuse axonal injury reported in mild Traumatic Brain Injury.
A possible role for integrin signaling in diffuse axonal injury
32 -, Sheehy SP, and Parker KK. 2011. “The Role of Mechanical Forces in Guiding Tissue Differentiation.” Tissue Engineering in Regenerative Medicine, Pp. 77-97. Publisher's VersionAbstract
Stem cell differentiation is regulated by a diverse array of extracellular cues. Recent evidence suggests that mechanical interactions between extracellular matrix (ECM) and cell surface receptors as well as physical interactions between neighboring cells play important roles in stem cell self-renewal and differentiation. It is also becoming clear that the ECM effects cellular behavior through many physical mechanisms, such as ECM geometry, elasticity, and the propagation of mechanical signals to intracellular compartments. Considerable effort is being targeted at developing biomaterials that exploit cellular microenvironments in guiding cells to desired phenotypes and organizing these into functional tissues. Improved understanding of the interactions between stem cells and their physical environment should yield new insight into the mechanisms governing their activity and allow the fabrication of artificial ECM to promote tissue development.
The Role of Mechanical Forces in Guiding Tissue Differentiation.
31 -, Grosberg A, Kuo P-L, Guo C-L, Geisse NA, Bray M-A, Adams WJ, Sheehy SP, and Parker KK. 2011. “Self-organization of muscle cell structure and function.” PLOS Computational Biology, 7, 2, Pp. e1001088. Publisher's VersionAbstract
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellular space potentiate the organization of cytoskeletal scaffolds for directed sarcomeregenesis. We developed a quantitative model of how the cytoskeleton of neonatal rat ventricular myocytes organizes with respect to geometric cues in the extracellular matrix. Numerical results and in vitro assays to control myocyte shape indicated that distinct cytoskeletal architectures arise from two temporally-ordered, organizational processes: the interaction between actin fibers, premyofibrils and focal adhesions, as well as cooperative alignment and parallel bundling of nascent myofibrils. Our results suggest that a hierarchy of mechanisms regulate the self-organization of the contractile cytoskeleton and that a positive feedback loop is responsible for initiating the break in symmetry, potentiated by extracellular boundary conditions, is required to polarize the contractile cytoskeleton.
Self-organization of muscle cell structure and function.
30 -, Mellado P, McIlwee HA, Badrossamay MR, Goss JA, Mahadevan L, and Parker KK. 2011. “A simple model for nanofiber formation by rotary jet-spinning.” Applied Physics Letters, 99, 20, Pp. 203107. Publisher's VersionAbstract
Nanofibers are microstructured materials that span a broad range of applications from tissue engineering scaffolds to polymer transistors. An efficient method of nanofiber production is rotary jet-spinning (RJS), consisting of a perforated reservoir rotating at high speeds along its axis of symmetry, which propels a liquid, polymeric jet out of the reservoir orifice that stretches, dries, and eventually solidifies to form nanoscale fibers. We report a minimal scaling framework complemented by a semi-analytic and numerical approach to characterize the regimes of nanofiber production, leading to a theoretical model for the fiber radius consistent with experimental observations. In addition to providing a mechanism for the formation of nanofibers, our study yields a phase diagram for the design of continuous nanofibers as a function of process parameters with implications for the morphological quality of fibers.
A simple model for nanofiber formation by rotary jet-spinning
29 -, Alford PW, Nesmith AP, Seywerd JN, Grosberg A, and Parker KK. 2011. “Vascular smooth muscle contractility depends on cell shape.” Integrative Biology, 3, 11, Pp. 1063-1070. Publisher's VersionAbstract
The physiologic role of smooth muscle structure in defining arterial function is poorly understood. We aimed to elucidate the relationship between vascular smooth muscle architecture and functional contractile output. Using microcontact printing and muscular thin film technology, we engineered in vitro vascular tissues with strictly defined geometries and tested their contractile function. In all tissues, vascular smooth muscle cells (VSMCs) were highly aligned with in vivo-like spindle architecture, and contracted physiologically in response to stimulation with endothelin-1. However, tissues wherein the VSMCs were forced into exaggerated spindle elongation exerted significantly greater contraction force per unit cross-sectional area than those with smaller aspect ratios. Moreover, this increased contraction did not occur in conjunction with an increase in traditionally measured contractile phenotype markers. These results suggest that cellular architecture within vascular tissues plays a significant role in conferring tissue function and that, in some systems, traditional phenotype characterization is not sufficient to define a functionally contractile population of VSMCs.
Vascular smooth muscle contractility depends on cell shape
2010
28 -, Alford PW, Feinburn AW, Sheehy SP, and Parker KK. 2010. “Biohybrid thin films for measuring contractility in engineered cardiovascular muscle.” Biomaterials, 31, 13, Pp. 3613-3621. Publisher's VersionAbstract
In vitro cardiovascular disease models need to recapitulate tissue-scale function in order to provide in vivo relevance. We have developed a new method for measuring the contractility of engineered cardiovascular smooth and striated muscle in vitro during electrical and pharmacological stimulation. We present a growth theory-based finite elasticity analysis for calculating the contractile stresses of a 2D anisotropic muscle tissue cultured on a flexible synthetic polymer thin film. Cardiac muscle engineered with neonatal rat ventricular myocytes and paced at 0.5 Hz generated stresses of 9.2 +/- 3.5 kPa at peak systole, similar to measurements of the contractility of papillary muscle from adult rats. Vascular tissue engineered with human umbilical arterial smooth muscle cells maintained a basal contractile tone of 13.1 +/- 2.1 kPa and generated another 5.1 +/- 0.8 kPa when stimulated with endothelin-1. These data suggest that this method may be useful in assessing the efficacy and safety of pharmacological agents on cardiovascular tissue.
Biohybrid thin films for measuring contractility in engineered cardiovascular muscle.
27 -, Vandeparre H, Gabriele S, Brau F, Gay C, and Parker KK. 2010. “Hierarchical wrinkling patterns.” Soft Matter, 6, 22, Pp. 5751-5756. Publisher's VersionAbstract
This paper reports a simple and flexible method for generating hierarchical patterns from wrinkling instability. Complex features with gradually changing topographies are generated by using the spontaneous wrinkling of a rigid membrane (titanium) on a soft foundation (polystyrene) compressed via the diffusion of a solvent. We show that the morphology of these unreported wrinkled patterns is directly related to the rheological properties of the polymer layer and the geometry of the diffusion front. Based on these ingredients, we rationalize the mechanism for the formation of hierarchical wrinkling patterns and quantify our experimental findings with a simple scaling theory. Finally, we illustrate the relevance of our structuration method by studying the mechanosensitivity of fibroblasts.
Hierarchical wrinkling patterns
26 -, Göktepe S, Abilez OJ, Parker KK, and Kuhl E. 2010. “A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis.” Publisher, 265, 3, Pp. 433-442. Publisher's VersionAbstract
We present a novel computational model for maladaptive cardiac growth in which kinematic changes of the cardiac chambers are attributed to alterations in cytoskeletal architecture and in cellular morphology. We adopt the concept of finite volume growth characterized through the multiplicative decomposition of the deformation gradient into an elastic part and a growth part. The functional form of its growth tensor is correlated to sarcomerogenesis, the creation and deposition of new sarcomere units. In response to chronic volume-overload, an increased diastolic wall strain leads to the addition of sarcomeres in series, resulting in a relative increase in cardiomyocyte length, associated with eccentric hypertrophy and ventricular dilation. In response to chronic pressure-overload, an increased systolic wall stress leads to the addition of sacromeres in parallel, resulting in a relative increase in myocyte cross sectional area, associated with concentric hypertrophy and ventricular wall thickening. The continuum equations for both forms of maladaptive growth are discretized in space using a nonlinear finite element approach, and discretized in time using the implicit Euler backward scheme. We explore a generic bi-ventricular heart model in response to volume- and pressure-overload to demonstrate how local changes in cellular morphology translate into global alterations in cardiac form and function.
A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis
25 -, Bray MA, Adams WJ, Geisse NA, Feinberg AW, Sheehy SP, and Parker KK. 2010. “Nuclear morphology and deformation in engineered cardiac myocytes and tissues.” Biomaterials, 31, 19, Pp. 5143-5150. Publisher's VersionAbstract
Cardiac tissue engineering requires finely-tuned manipulation of the extracellular matrix (ECM) microenvironment to optimize internal myocardial organization. The myocyte nucleus is mechanically connected to the cell membrane via cytoskeletal elements, making it a target for the cellular response to perturbation of the ECM. However, the role of ECM spatial configuration and myocyte shape on nuclear location and morphology is unknown. In this study, printed ECM proteins were used to configure the geometry of cultured neonatal rat ventricular myocytes. Engineered one- and two-dimensional tissue constructs and single myocyte islands were assayed using live fluorescence imaging to examine nuclear position, morphology and motion as a function of the imposed ECM geometry during diastolic relaxation and systolic contraction. Image analysis showed that anisotropic tissue constructs cultured on microfabricated ECM lines possessed a high degree of nuclear alignment similar to that found in vivo; nuclei in isotropic tissues were polymorphic in shape with an apparently random orientation. Nuclear eccentricity was also increased for the anisotropic tissues, suggesting that intracellular forces deform the nucleus as the cell is spatially confined. During systole, nuclei experienced increasing spatial confinement in magnitude and direction of displacement as tissue anisotropy increased, yielding anisotropic deformation. Thus, the nature of nuclear displacement and deformation during systole appears to rely on a combination of the passive myofibril spatial organization and the active stress fields induced by contraction. Such findings have implications in understanding the genomic consequences and functional response of cardiac myocytes to their ECM surroundings under conditions of disease.
Nuclear morphology and deformation in engineered cardiac myocytes and tissues.
24 -, O’Grady M, Kuo P, and Parker KK. 2010. “Optimization of electroactive hydrogel actuators.” ACS Applied Materials & Interfaces, 2, 2, Pp. 343-346. Publisher's VersionAbstract
To improve actuation of hydrogels, we utilized an emulsion polymerization to engineer porous structures into polyelectrolyte hydrogels. Porous hydrogels generated large deformation as a result of enhanced deswelling mechanisms; for instance, the decreased number of COO− groups that must be protonated in porous hydrogels to initiate bending. Measurements of the mechanical properties revealed that porous hydrogels also bend to a larger extent because of their increased flexibility. Overall, our results demonstrate that the fast and large actuation of polyelectrolyte hydrogels can be accomplished by increasing the hydrogel porosity.
Optimization of electroactive hydrogel actuators
23 -, Feinberg AW, and Parker KK. 2010. “Surface-initiated assembly of protein nanofabrics.” Nanoletters, 10, 6, Pp. 2184-2191. Publisher's VersionAbstract
Cells and tissues are self-organized within an extracellular matrix (ECM) composed of multifunctional, nano- to micrometer scale protein fibrils. We have developed a cell-free, surface-initiated assembly technique to rebuild this ECM structure in vitro. The matrix proteins fibronectin, laminin, fibrinogen, collagen type I, and collagen type IV are micropatterned onto thermosensitive surfaces as 1 to 10 nm thick, micrometer to centimeter wide networks, and released as flexible, free-standing nanofabrics. Independent control of microstructure and protein composition enables us to engineer the mechanical and chemical anisotropy. Fibronectin nanofabrics are highly extensible (>4-fold) and serve as scaffolds for engineering synchronously contracting, cardiac muscle; demonstrating biofunctionality comparable to cell-generated ECM.
Surface-initiated assembly of protein nanofabrics
2009
22 -, Bol M, Reese S, Parker KK, and Kuhl K. 2009. “Computational modeling of muscular thin films for cardiac repair.” Computational Mechanics, 4, 43, Pp. 535-544. Publisher's VersionAbstract
Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.
Computational modeling of muscular thin films for cardiac repair
21 -, Geisse NA, Sheehy SP, and Parker KK. 2009. “Control of myocyte remodeling in vitro with engineered substrates.” In Vitro Cellular & Developmental biology. Animal., 45, 7, Pp. 343-350. Publisher's VersionAbstract
Tissue microenvironments can regulate cell behavior by imposing physical restrictions on their geometry and size. An example of these phenomena is cardiac morphogenesis, where morphometric changes in the heart are concurrent with changes in the size, shape, and cytoskeleton of ventricular myocytes. In this study, we asked how myocytes adapt their size, shape, and intracellular architecture when spatially confined in vitro. To answer this question, we used microcontact printing to physically constrain neonatal rat ventricular myocytes on fibronectin islands in culture. The myocytes spread and assumed the shape of the islands and reorganized their cytoskeleton in response to the geometric cues in the extracellular matrix. Cytoskeletal architecture is variable, where myocytes cultured on rectangular islands of lower aspect ratios (length to width ratio) were observed to assemble a multiaxial myofibrillar arrangement; myocytes cultured on rectangles of aspect ratios approaching those observed in vivo had a uniaxial orientation of their myofibrils. Using confocal and atomic force microscopy, we made precise measurements of myocyte volume over a range of cell shapes with approximately equal surface areas. When myocytes are cultured on islands of variable shape but the same surface area, their size is conserved despite the changes in cytoskeletal architecture. Our data suggest that the internal cytoskeletal architecture of the cell is dependent on extracellular boundary conditions while overall cell size is not, suggesting a growth control mechanism independent of the cytoskeleton and cell geometry.
Control of myocyte remodeling in vitro with engineered substrates
20 -, Domian IJ, Chiravuri M, Meer van der P, Feinberg AW, Shi X, Shao Y, Wu SM, Parker KK, and Chien KR. 2009. “Generation of functional ventricular heart muscle from mouse ventricular progenitor Cells.” Science, 326, 5951, Pp. 426-429. Publisher's VersionAbstract
The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology.
Generation of functional ventricular heart muscle from mouse ventricular progenitor Cells.

Pages