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Letter to the Editor
SYMMETRY BREAKING IN CULTURED MAMMALIAN CELLS

Dear Editor:

The generation of natural forms, such as characteristic tissue pat-
terns, involves a process of symmetry breaking in which structures
with an initially uniform configuration spontaneously transform into
structures with lower symmetry order (Ball, 1999). Symmetry break-
ing has been examined in biological systems, including formation
of fruiting bodies in slime mold (Palsson and Cox, 1996), pattern
formation in bacterial colonies (Budrene and Berg, 1991), and gen-
eration of animal coat patterns (Murray, 1993); however, the length
scale of the characteristic patterns analyzed were orders of magni-
tude larger than the individual cell components that drive pattern-
ing. Here we describe a simplified in vitro model in which symmetry
breaking and self-organization can be visualized within small
groups of mammalian cells migrating within a geometrically con-
fined adhesive space on micropatterned culture substrates created
with a microcontact printing technique (Chen et al., 1997).

Development of mammalian tissues, such as capillary blood ves-
sels, is mediated by coordinated migration of cells, which, in turn,
is controlled by cell interactions with soluble morphogens, other
cells, and insoluble extracellular matrix proteins, such as fibronec-
tin (FN). To create a minimal in vitro model of migration-dependent
pattern generation, capillary endothelial cells were cultured in me-
dium containing motility factors (basic fibroblast growth factor +
10% serum) on small (=50 X 50 pm?) FN-coated adhesive islands
that were surrounded by nonadhesive barrier regions. When two
cells were cultured on a single island, the high symmetry order
associated with the ordinarily random movement of cells on uncon-
fined adhesive surfaces (Dunn and Brown, 1987) changed sponta-
neously. This transition resulted in directional cell migration and
lower symmetry order, such that the entire multicellular system syn-
chronously rotated about its geometric center (Fig. 14). Each cell
in this dynamic pattern was led by a lamellipodium that wrapped
around the trailing edge of the neighboring cell, thereby creating a
sigmoid cell—cell interface reminiscent of the Yin—Yang (YY) sym-
bol of Far Eastern religions (Capra, 1991) (Fig. 1B-D).

The self-organization of stably rotating cellular ensembles was
a robust property of the system and not a random transient phe-
nomenon: YYs were always found to be present when the two-cell
systems were analyzed and, once the pattern established itself, the
cells rotated continuously over the entire period of observation
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(over 24 h). YYs were observed to rotate with similar angular
velocity in groups of two to four cells cultured on islands of dif-
ferent size (30-50 wm) and shape (circle versus square) (Fig. 14—
D), with equal probability of clockwise or counter-clockwise mi-
gration. Emergence of this stable pattern in a group containing
only two cells represents the simplest example of symmetry break-
ing in a mammalian cell population.

A computer simulation based on an idealized minimal model in
which two cells migrated on a circular track driven by random walk
(Dunn and Brown, 1987) suggests that correlated migration similar
to that we observed will spontaneously arise and be stable against
perturbations if the normally random motility of these cells exhibits
a certain minimal value for two basic parameters: persistence and
dynamic coupling (Fig. 2). Persistence is the tendency of a cell to
keep moving in the same direction; dynamic coupling indicates that
one cell has an increased tendency to move in the same direction
as its neighbor when the cells touch (e.g., due to mechanical in-
duction of polarized motion, Verkhovsky et al., 1999). Endothelial
cells exhibit persistence values that are many-fold higher than those
of other migrating cells, such as leukocytes (Stokes et al., 1991)
and fibroblasts (Ware et al., 1998), and thus, the robustness of cor-
related migration we observed in endothelial cell populations is in
agreement with the model. In fact, fibroblasts did not form YYs
when cultured on the same FN-coated islands, and instead showed
a straight cell—cell boundary (Fig 1E).

The transition from random cell motility to coordinated direc-
tional migration of cellular ensembles in this simplified in vitro
system represents a novel class of self-organization at the multicel-
lular level. Such a process generates patterns with characteristic
features at the same length scale as the underlying components,
namely, the individual cells, as is typical for tissue microarchitec-
ture. This mechanism thus differs from the classical models based
on reaction-diffusion (e.g., Turing model) which explain long-range
(macroscopic) patterns (Murray, 1993) but averages out local inho-
mogeneities. Instead, our experimental model incorporates local ad-
hesive and structural cues that are also known to play a key role
in mammalian tissue morphogenesis (Huang and Ingber, 1999).
Thus, it may provide a useful tool to identify how structural cues
may lead to symmetry breaking and the emergence of complex tis-
sue patterns through collective behavior among different cellular
and molecular components.
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FiG. 1. Spontaneous symmetry breaking within migrating mammalian cells in vitro. (A) Phase contrast images of the same ensemble of
two capillary cells migrating in a stable YY pattern for over 1 h on a square FN-coated adhesive island (40 X 40 wm?). White arrow
indicates the progressive counter-clockwise movement of the cells; tip of black arrowhead abuts on the leading edge of one cell. Similar
YY patterns were observed in cells on 50 (B) and 30 (C) pm squares and on circular islands (D); the latter cells were stained for
microtubules (red) and nuclei (blue). (E) Two 3T3 fibroblasts on a 50-wm square fail to exhibit YY pattern and rotation. (Note: A movie
of the dynamics of Fig. 1A can be seen at: http://www.childrenshospital.org.research/ingber/movie.qt.)
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