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ABSTRACT

Mechanochemical and mechanoelectrical signaling is imperative for cardiac organogenesis and un-
derlies pathophysiological events. New techniques for engineering cardiac tissue allow unprecedented
means of modeling these phenomena in vitro. However, experimental design is often hampered by
a lack of models that can be adapted to the ideal conditions these methods allow. To address these
deficiencies, we developed a mathematical model to calculate the distribution of stress and strain in
fibrous cardiac tissue. The fluid–fiber–collagen model characterizes the mechanical behavior of car-
diac tissue and is solved analytically for the distributions of stress and strain along the myocardial
fibers. An example application of the model is presented: modeling the distribution of strains in the
vicinity of an ischemic region. The ischemic region is stretched during systole, as has been shown
in previous one-dimensional models. Our model predicts a complex distribution of stretch in the
border zone surrounding the ischemic region and in nonischemic regions surrounding the border
zone. These strain patterns may predict patterns of mechanochemical coupling that results in lo-
calized fibrosis, altered gene expression, or the mechanoelectrical signaling events that potentiate
cardiac arrhythmias.
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INTRODUCTION

STRESSES AND STRAINS within tissue have been found

to potentiate a variety of cellular effects, from tissue

development to terminal disease.1–3 Nowhere is the role

of mechanotransduction more complex than in cardiac

muscle, where both physiological and pathological re-

modeling of the tissue, as well as fatal arrhythmias, have

been attributed to mechanical forces.4–6 The geometric

complexity of the heart and the unique dynamics of the

cardiac tissue microenvironment have made it difficult to

elucidate the mechanochemical and mechanoelectrical

signaling pathways that underlie these events. Mechani-

cal stress-induced hypertrophy and remodeling after

myocardial infarction are examples of such processes,

where wall stress and strain patterns potentiate altered

gene expression patterns, resulting in fibrosis, misalign-

ment of sarcomeres, altered cytoskeletal architecture, and

an increased incidence of cardiac arrhythmias.7–9 New

techniques10–12 for modeling the tissue microenviron-

ment provide unique opportunities for studying cardiac

tissue in two- and three-dimensional preparations.13–15

However, experimental strategies are often hampered by

a lack of generalized, analytical models that will allow

the experimentalist to apply fundamental engineering de-

sign principles. This is especially true in modeling car-

diac mechanics, where most models are highly con-

strained in an effort to model in vivo histologyand require

numerical techniques to solve.16,17

These circumstances prompted us to ask: can we de-
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velop an analytical model of the stress and strain distri-

butions in cardiac tissue? We adapted a previous model18

to two- and three-dimensional idealized cardiac tissues

and derived an analytical solution to the stress and strain

in the tissue. When the model is applied to the strain dis-

tribution in or near an infarcted zone, a complex distri-

bution of strain gradients is calculated, not only in the

ischemic border zone, but also in areas at a distance from

the infarct itself. These results are similar to magnetic

resonance imaging (MRI) tagging experiments, where

tissue deformation was observed in outlying regions from

the infarcted zone. These variations in the spatial distri-

bution of strain may underlie the remodeling that is ob-

served clinically after myocardial infarction. It is hoped

that the mathematical model presented here will aid the

design of engineered models of the cardiac tissue mi-

croenvironment.

METHODS

Two-dimensional model

We assume that the myocardial fibers align with the x

axis, and we use a polar coordinate system to specify po-

sition (r, u). The continuum fluid–fiber–collagen model18

represents the mechanical properties of the tissue. The

stress tensor, sij, is

sij 5 2pdij 1 Ttitj 1 2meij (1)

where p is the myocardial tissue pressure, dij is the Kro-

necker delta, T is the tension of the myocardial fibers, t

is a unit vector parallel to the local fiber direction, m is

the shear modulus, and eij is the strain tensor. The first

term in Eq. (1) accounts for the fluid hydrostatic pres-

sure plus a contribution from the incompressible colla-

gen strut matrix. The second term represents the active

tension developed by the myocardium, acting in the di-

rection parallel to the myocardial fibers. In polar coordi-

nates, this term becomes

Ttitj 5 T

cos2u 2cosusinu432cosusinu sin2u
(2)

with T assumed to be independent of strain. The third

term characterizes the strain within the extracellular col-

lagen matrix. We assume that the collagen matrix is

isotropic, and that the strains are small enough that we

can use a linear model for the strain tensor.

The equations of quasistatic mechanical equilibrium in

polar coordinates are19
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The displacement of the tissue u 5 (ur, uu) determines

the strain tensor. In polar coordinates,19
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We assume that the tissue is incompressible (=?u 5 0).

Incompressibility implies the displacement can be spec-

ified by a stream function c,
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We model an inhomogeneous (ischemic) region as a

circle of radius a (Fig. 1). The ischemic tissue represents

an inhomogeneity that is unable to generate an active

stress during systole (T 5 0, r , a; T 5 To, r . a). At

the border of this inhomogeneous region (r 5 a), the dis-

placement and the radial components of the stress tensor

are continuous. As r approaches infinity, the displace-

ment approaches zero (fixed boundary). The solution is

unique, except for a constant, uniform pressure term.20

Three-dimensional model

The three-dimensional model is analogous to the two-

dimensional model. We assume that the fibers align with

the z axis, and we use a spherical coordinate system (r,

u, f). The stress and strain are independent of the angle

f (azimuthal symmetry). The stress tensor is given by

Eq. (1). In spherical coordinates, the second term of Eq.

(1) becomes

3cos2u 1 1 2sin2u 0

Ttitj 5 }
T

2
} 2sin2u cos2u 2 1 04 (6)

0 0 0

The equations of quasistatic mechanical equilibrium in

spherical coordinates are19
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The displacement u 5 (ur, uu, uf) determines the strain

tensor. In spherical coordinates,19
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Incompressibility and azimuthal symmetry imply the dis-

placement can be specified by a stream function c,
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We model an ischemic region as a sphere of radius a

(T 5 0, r , a; T 5 To, r . a).

RESULTS

Two-dimensional model

We must determine c and p in the inner (i, r , a) and

outer (o, r . a) regions, subject to Eqs. (1)–(5) along with

the boundary conditions. The solution can be found an-

alytically, and is
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PREDICTING CARDIAC MECHANOTRANSDUCTION EFFECTS
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All components of the stress and strain tensors can be

calculated from c and p, using Eqs. (1)–(5).

The model can be used to predict directionally biased

mechanotransduction events. For example, Sachs21 has

modeled stretch-activated channels as having a conduc-

tance that depends on the strain parallel to the fibers, exx

(i.e., sarcomere length). We can write exx in terms of

the strain tensor in polar coordinates as exx 5 errcos2u 1
euusin

2u 2 eru2cosusinu. In our model, the strain paral-

lel to the muscle fibers is

exx 5 }
8

T

m
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exx 5 }
8

T

m
o} 322 1}

a

r
}2

2

1 3 1}
a

r
}2

4

4 cos 4u (r . a) (14b)

Figure 2a contains a plot of exx. The ischemic region

stretches uniformly (yellow), and regions in the isch-

emic border zone surrounding the inhomogeneity

stretch in a complex pattern (red and blue). The mag-

nitudes of stretch along the fiber length may be used

to predict the opening of stretch-activated ion channels

and the initiation of action potential propagation po-

tentiated by their opening.

Three-dimensional model

In three dimensions, the solution is
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Figure 2b contains a plot of ezz. The result is qualitatively

similar to the results of the two-dimensional model, ex-

cept that the stretch along the z axis (the poles of the

sphere) is greater than the stretch along the x and y axes
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FIG. 1. Schematic diagram of tissue geometry.



(the equator). Figure 3 shows the full three-dimensional

distribution of ezz.

DISCUSSION

We have developed a model for calculating stress and

strain in two- and three-dimensional engineered cardiac

tissue. Furthermore, we have calculated analytically the

stress and strain distribution around an inhomogeneous re-

gion in cardiac tissue, with the goal of understanding the

mechanical strain of cardiac tissue near an idealized isch-

emic region. We demonstrate that there can be a complex

distribution of strain in the ischemic border zone sur-

rounding the inhomogeneousregion. We speculate that the

distribution of strains in the tissue volume may explain ec-

centric patterns of aberrant gene expression, fibrosis, and

electrical wave propagation in the remodeled tissue.

Our mathematical calculation is based on the

fluid–fiber–collagen model of cardiac tissue.18,22,23 In

our calculation, we make several assumptions:

1. Strains are small enough for a linear model of elas-

ticity.

2. Mechanical properties of the collagen matrix are

isotropic.

3. Tissue is in quasistatic mechanical equilibrium.

4. Active tension is independent of strain.

5. Myocardial fibers are straight and are all parallel

to one another (no rotation of the fiber direction

with depth).

6. The inhomogeneous region is circular or spherical,

with a sharp border separating normal and abnor-

mal tissue.

7. The tissue is incompressible.

8. The effects of ischemia on the mechanical proper-

ties of cardiac tissue can be accounted for by set-

ting the active tension to zero.

9. The tissue is unbounded.

10. The boundary far from the inhomogeneity is fixed.

While some of the assumptionsare probably accurate (e.g.,

quasistaticmechanicalequilibrium, incompressible tissue),

others are questionable. In the original formulation of the

fluid–fiber–collagen model,18,22 active tension depends on

the tissue strain because of changes in the degree of over-
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lap between the actin and myosin fibers responsible for

contraction.This well-known behavior is thought to be the

basis for the Frank–Starling mechanism in the heart. The

effect is absent in our model. The elastic properties of the

collagen may be anisotropic, and during chronic ischemia

they may be different in normal and abnormal tissue. Our

model for engineered cardiac tissue treats the collagen as

isotropic, so we can use a single parameter—the shear

modulus m—to characterize its mechanical properties.

Also, we assume that the mechanical properties of colla-

gen are uniform throughout the tissue. This assumption

may apply to engineered in vitro preparations better than

to in vivo preparations, and may apply better during acute

ischemia—when there has not been enough time for the

collagen matrix to change significantly—than during

chronic ischemia. Strains within the heart are large, which

implies significant deviations from linearity, but they may

not be as large in engineered preparations. In a heart, the

ischemic zone will have an irregular geometry that may

reach the endocardial or epicardial surface, but in an en-

gineered preparation the experimentalist has more control

over the geometry. Thus, the application of a quantitative

model of the tissue architecture should be predicated on

the validation of the model’s assumptions.

Our model allows the computation of strain distribu-

tions within uniformly aligned cardiac tissue and repre-

sents a design tool for engineered preparations for the

study of mechanotransduction signaling pathways in tis-

sues. The model yields an analytical solution for the stress

and strain distribution in engineered cardiac tissue and

we demonstrate the utility of the model by calculating

the strain patterns in and surrounding an ischemic region

within the tissue. Such an analytical model demonstrates

at a glance how the behavior depends on the parameters

of the model and is useful for the design of in vitro ex-

periments with engineered tissue preparations. If we were

to relax the assumptions of our model, we could not ob-

tain analytical solutions, and we would have to adopt nu-

merical methods. While numerical solutions are valuable,

they often do not provide the physical insight that an an-

alytical solution offers. Moreover, our analytical model

provides a known solution that others can use to assess

the accuracy of their numerical algorithms. Our compu-

tationally simple model may be combined with other

models of cellular mechanotransduction to predict effects

in bulk tissue preparations. For example, the model may
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FIG. 2. Distribution of strain parallel to the myocardial fibers in and around a (a) circular (two-dimensional) or (b) spherical

(three-dimensional) inhomogeneity. The tissue outside the inhomogeneity has tension To, and the tissue within the inhomogene-

ity has zero tension. Far from the inhomogeneity, the tissue is fixed. The fiber direction is horizontal. Yellow (positive values)

corresponds to stretch of the fibers. The data are calculated taking a 5 To 5 m 5 1.

FIG. 3. The three-dimensional distribution of strain parallel to the myocardial fibers around a spherical inhomogeneity. The

upper surface (y–z) is the same as plotted in Fig. 2b. The fibers lie along the z axis. The strain distribution does not depend on

the angle f in the x–y plane. The parameters and color scale are the same as in Fig. 2.
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be used with models of the heart’s electrical activity that

take into account stretch-activated channels24,25 to deter-

mine the mechanism of stretch-induced arrhythmias, or

to predict fibrosis patterns after stimulated ischemia or

hypoxia.

Our model is not the first to examine the mechanical

behavior caused by regional ischemia in the heart. Elings

et al. modeled the isometric tension development in a

one-dimensional regionally ischemic muscle.26 They

found that during systole, the ischemic tissue underwent

a “paradoxical” stretching. Lew has observed paradoxi-

cal stretching during experiments of regional ischemia in

dogs.27 Our Fig. 2 contains a similar finding: the tissue

in the inhomogeneous region stretches. Our results ex-

tend the Elings et al. calculation by predicting the full

three-dimensional strain distribution. In particular, we

find a complex strain distribution in the normal tissue

surrounding the ischemic region that is absent in their

one-dimensional model.26

Bovendeerd et al. measured the strain distribution in

a dog with regional ischemia, and also developed a de-

tailed mathematical model of whole-heart mechanical

behavior.28 They concluded that “the deformation pat-

tern of the ventricle was asymmetric with respect to the

ischemic region because of the anisotropy of the myo-

cardial tissue.” Our model is isotropic and our inho-

mogeneity was radially symmetric, and thus the defor-

mation pattern was symmetrical about the infarct, but

does depend on the direction relative to the fibers. In

Fig. 2, the distribution of strain is different in the fiber

direction than in other directions. The sign of the strain

varies with both angle and radial distance from the isch-

emic border. Within the border zone, along the fiber

direction the tissue stretches next to the border and then

shortens farther from the border. Moreover, this be-

havior appears similar in the directions parallel and per-

pendicular to the fibers, but of opposite sign at an an-

gle of 45° to the fiber direction. van Leuven et al.

observed significant gradients of strain across the per-

fusion boundary during acute myocardial ischemia.29

Although they do not agree with other researchers re-

garding the directional differences in the strain distri-

bution, their observation of large strain gradients is

consistent with our prediction of significant variations

of the strain within the border zone.30
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