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We present a novel computational model for maladaptive cardiac growth in which kinematic changes
of the cardiac chambers are attributed to alterations in cytoskeletal architecture and in cellular
morphology. We adopt the concept of finite volume growth characterized through the multiplicative
decomposition of the deformation gradient into an elastic part and a growth part. The functional form
of its growth tensor is correlated to sarcomerogenesis, the creation and deposition of new sarcomere
units. In response to chronic volume-overload, an increased diastolic wall strain leads to the addition of
sarcomeres in series, resulting in a relative increase in cardiomyocyte length, associated with eccentric
hypertrophy and ventricular dilation. In response to chronic pressure-overload, an increased systolic
wall stress leads to the addition of sacromeres in parallel, resulting in a relative increase in myocyte
cross sectional area, associated with concentric hypertrophy and ventricular wall thickening. The
continuum equations for both forms of maladaptive growth are discretized in space using a nonlinear
finite element approach, and discretized in time using the implicit Euler backward scheme. We explore
a generic bi-ventricular heart model in response to volume- and pressure-overload to demonstrate how

local changes in cellular morphology translate into global alterations in cardiac form and function.

© 2010 Elsevier Ltd. All rights reserved.

1. Motivation

Cardiovascular disease is the leading cause of death and
disability in both industrialized nations and the developing world,
accounting for approximately 40% of all human mortality
(Rosamond et al., 2007). Despite tremendous scientific progress
during the past 20 years, heart failure remains one of the most
common, costly, disabling, and deadly medical conditions affect-
ing more than 25 million people worldwide (Libby et al., 2007).
Unlike many types of tissue in the body, diseased cardiac tissue
does not regenerate and its damage is usually fatal (Emmanoui-
lides et al., 1994). In hypertrophic cardiomyopathy, mechanical
stimuli in the form of volume- and pressure-overload are believed
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to be the major driving forces for disease initiation and disease
progression (Kumar et al.,, 2005). On the cellular level, cardiac
hypertrophy is initiated by alterations in cytoskeletal architecture
and in cellular morphology. On the organ level, these changes
manifest themselves in ventricular dilation or wall thickening
(Berne and Levy, 2001; Opie, 2003). In an attempt to better
understand the pathology of maladaptive cardiac growth, we seek
to answer two fundamental questions: How do local changes in
cellular morphology and cytoskeletal architecture translate into
global alterations in cardiac form and function? and How are these
changes regulated by mechanical factors?

The functional contractile unit of a cardiac cell is the
sarcomere, a 1.9—2.1um long parallel arrangement of thick
filaments of myosin that slide along thin filaments of actin (Bray
et al., 2008; Mansour et al., 2004). Approximately 50 sarcomeres
in series make up a myofibril; about 50-100 myofibrils in parallel
make up a cardiomyocyte (Sanger et al., 2000). Healthy cardio-
myocytes have a cylindrical shape with a length of approximately
100 um and a diameter of 10—25 pm, consisting of a total of about
5000 sarcomere units (Opie, 2003). Fig. 1 displays an adult
ventricular cardiomyocyte with the sarcomeric actin labeled in
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Fig. 1. Adult ventricular cardiomyocyte. The sarcomeric actin is labeled in green
and the periodically spaced t-tubule system is marked in red, giving the cell its
characteristic striated appearance. Healthy cardiomyocytes have a cylindrical
shape with a diameter of 10—25um and a length of ~ 100pum, consisting of
approximately 50 sarcomere units in series making up a myofibril and 50-100
myofibrils in parallel. Cardiac disease can be attributed to structural changes in the
cardiomyocyte, either through eccentric growth in dilated cardiomyopathy or
through concentric growth in hypertrophic cardiomyopathy. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 2. Sarcomere units of human embryonic stem cell-derived cardiomyocyte.
Sarcomeres are defined as the segment between two neighboring Z-lines, shown
in red, which appear as dark lines under the transmission electron microscope.
Healthy sarcomeres are 1.9-2.1pum long characterized through a parallel
arrangement of thick filaments of myosin, displayed in grey, sliding along thin
filaments of actin, labeled in green. Although cardiac cells are known to change
length and thickness in response to mechanical loading, the individual sarcomeres
maintain an optimal resting length. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

green. Each cardiomyocyte is bounded by an external membrane
called the sarcolemma, which invaginates perpendicular to the
long axis of the cell to form an extensive tubular network. In
Fig. 1, this periodically spaced T-tubule system is stained in red
(Geisse et al., 2009). Fig. 2 illustrates individual sarcomere
units as the segments between two neighboring Z-lines. In the
transmission electron microscope image of a human embryonic
stem cell-derived cardiomyocyte shown below, the Z-lines appear
as dark lines giving the cell its characteristic striated appearance.

Historically, it has been believed that the contribution of
cardiomyocytes to cardiac remodeling is primarily due to
hypertrophy rather than hyperplasia, i.e., that cardiomyocytes
are able to grow in size but not in number. They do so through
sarcomerogenesis, the creation and deposition of new sarcomere
units (Emmanouilides et al, 1994; Kumar et al., 2005). A
commonly accepted measure to characterize cardiomyocyte
morphology is their length-to-width ratio which is approximately
7:1 in the healthy mammalian myocardium (Gerdes, 2002).
Cardiomyocyte morphology exhibits distinct variation in various
pathological conditions (Gerdes and Capasso, 1995; Taber, 1995).
In response to chronic volume-overload, elevated diastolic wall
strains initiate the addition of sarcomeres in series, which
manifest themselves in a relative increase in cardiomyocyte
length without a significant change of cross sectional area.
Accordingly, the length-to-width ratio may increase to approxi-
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Fig. 3. Eccentric and concentric growth on the cellular and organ levels. Compared
with the normal heart (left), volume-overload induced eccentric hypertrophy is
associated with cell lengthening through the serial deposition of sarcomere units
and manifests itself in ventricular dilation in response to volume-overload
(center). Pressure-overload induced concentric hypertrophy is associated with
cell thickening through the parallel deposition of sarcomere units and manifests
itself in ventricular wall thickening in response to pressure-overload (right).

mately 11:1 (Gerdes et al., 1992). This type of cardiac growth,
which is associated with ventricular dilation on the macroscopic
level, is referred to as eccentric hypertrophy. In response to
chronic pressure-overload, however, elevated systolic wall stres-
ses initiate the addition of sacromeres in parallel, which manifest
themselves in a relative increase in myocyte cross sectional area
without significant changes in cell length. Accordingly, the length-
to-width ratio may decrease to approximately 3:1 (McCrossan
et al., 2004; Sawada and Kawamura, 1991). This type of cardiac
growth, which is associated with ventricular wall thickening on
the macroscopic level, is referred to as concentric hypertrophy.
The mechanical characteristics of these two forms of maladaptive
cardiac growth are summarized in Fig. 3. They are known to
initiate significant changes in phenotype, secondary to the
reactivation of portofolios of genes that are normally expressed
post-natally and that are correlated with contractile dysfunction
(Hunter and Chien, 1999).

In this manuscript, we develop a novel continuum model and a
computational simulation tool to predict eccentric and concentric
growth as natural consequences of the strain-driven serial
alignment and the stress-driven parallel bundling of newly
generated sarcomeres units. Our key kinematic assumption is that
the individual cardiomyocytes deform affinely with the surrounding
myocardial tissue. Even though cardiomyocytes comprise only
one-fourth of the total number of cells in the heart, this approach
seems justified since they account for more than 90% of the total
cardiac muscle volume (Kumar et al., 2005). Accordingly, we
attribute pathological changes in cardiac volume exclusively to
morphological changes of the cardiomyocytes themselves and
neglect extracellular matrix remodeling (Himpel et al., 2008; Kuhl
et al., 2005; Kuhl and Holzapfel, 2007). It has been demonstrated
experimentally that remodeling and myocyte slippage play a
rather insignificant role during cardiac growth (Gerdes et al.,
1992). Accordingly, we adopt the framework of volumetric
growth characterized through the concept of an incompatible



S. Goktepe et al. / Journal of Theoretical Biology 265 (2010) 433-442 435

growth configuration (Rodriguez et al, 1994), which was
originally developed in the context of finite strain plasticity
(Lee, 1969). Continuum theories of finite growth have been
studied intensely within the last decade (Epstein and Maugin,
2000; Goriely and Ben Amar, 2007; Lubarda and Hoger, 2002;
Verdier et al, 2009), and the essential findings have been
summarized comprehensively in a recent monograph (Ambrosi
et al., 2009). Continuum growth theories have been applied
successfully to characterize growing cell membranes (Goriely and
Tabor, 2003), tumors (Ambrosi and Mollica, 2002), vascular tissue
(Kuhl et al., 2007; Taber and Humphrey, 2001; Zohdi et al., 2004),
and cardiac tissue (Goktepe et al.,, 2010c; Kroon et al., 2009).
While earlier studies are primarily of theoretical and analytical
nature (Garikipati, 2009; Humphrey, 2002; Taber, 1995), we can
now observe a clear trend towards the computational modeling of
volumetric growth (Alford and Taber, 2008; Himpel et al., 2005;
Kroon et al., 2009; Menzel, 2005). By closely correlating macro-
scopic tissue growth to microscopicobservations on the cellular
level (Cox, 2010), we inherently resolve two of the major short-
comings of the phenomenological theory of volumetric growth: the
appropriate characterization of the growth tensor and the definition
of constitutive equations for its temporal evolution.

This manuscript is organized as follows. In Section 2, we
outline the generic framework of volumetric growth, and specify
the governing equations to characterize eccentric and concentric
growth. We discuss the continuous equations, their temporal
discretization, and their consistent linearization. In Section 3, we
first summarize our generic bi-ventricular heart model with its
loading and boundary conditions. Next, we subject this prototype
model to eccentric and concentric growth to explore how changes
in local cardiomyocyte morphology translate into alterations in
cardiac form and function. We conclude with a final discussion in
Section 4.

2. Methods

In this section, we first illustrate the governing equations for
volumetric growth. We then specify the generic set of equations
to strain-driven eccentric growth and to stress-driven concentric
growth. For both, we outline the continuum framework and its
algorithmic counterpart, including the temporal discretization
and the consistent linearization of the local and global residual
equations.

2.1. Generic framework of volumetric growth

We begin by briefly summarizing the governing equations of
volumetric growth within a geometrically nonlinear setting. To
characterize growth, we adopt the multiplicative decomposition
of deformation gradient F into an elastic part F® and a growth part
F® (Rodriguez et al., 1994),

F=F.F® with F=Vy, 1)

a concept that was first proposed in the context of finite elasto-
plasticity (Lee, 1969). This allows us to introduce the right Cauchy
Green tensor C and its elastic counterpart C,

C=F'.F, C°=F" FC=F"t.C.F&! )
whereby the latter can be interpreted as the covariant push
forward of C to the incompatible growth configuration. In the
absence of transient terms and external forces, the balance of

linear momentum can be expressed in the following reduced
format:

Div(iP)=0 with P=F-.S 3)

where Div(-) denotes the derivative with respect to the material
position X, P denotes the Piola stress, and S denotes the second
Piola Kirchhoff stress, respectively. A thermodynamically consis-
tent stress definition can be derived from the dissipation
inequality,

D=S:1C— >0 )

which we state here in its closed system format for the sake
of transparency. For discussions on advanced versions of the
dissipation inequality in the context of open system thermody-
namics we refer to the related literature (Epstein and Maugin,
2000; Himpel et al.,, 2005; Kuhl and Steinmann, 2003a, 2003b;
Lubarda and Hoger, 2002). For the sake of transparency, let us
assume an isotropic elastic response that can be characterized
exclusively in terms of the right Cauchy Green tensor of the
intermediate configuration C°=F&t.C.F&!. Following standard
arguments of thermodynamics, we can then introduce the
Helmholtz free energy as y = y/(F°), or reparameterize it conve-
niently in terms of the total deformation gradient F and the set of
internal variables F® as y = y/(F,F®), and evaluate the dissipation
inequality (4):
oyl 1. e

D= {5—2&} .§C+M :[5>0 (5)
Herein, M® = C° - §° denotes the Mandel stress (Epstein and Maugin,
2000), which is thermodynamically conjugate to the growth
velocity gradient L& = F& . F&~!, We immediately obtain the defini-
tion for the second Piola-Kirchhoff stress S as thermodynamically
conjugate quantity to the right Cauchy Green deformation tensor C,

S=2% =F&1.8°.F&' with S° = 2% (6)
where S takes the interpretation of the contravariant pull back of
the intermediate second Piola Kirchhoff stress $¢ to the undeformed
reference configuration. Just as a side remark, the elastic constitu-
tive moduli L® related to the intermediate configuration can be
obtained by taking the second derivative of the Helmholtz free
energy \ with respect to the corresponding kinematic quantity C°.
as¢ 2y

=25 =Yg ace @
It remains to define the growth tensor F?, for which we adopt the
common assumption of symmetry, i.e, F$=F%. As a natural
consequence, the entire rotation is lumped into the elastic part of
the deformation gradient F°, and the plastic spin in the fictitious
intermediate configuration vanishes identically (Boyce and Weber,
1989; Naghdi, 1990). Taking into account the orthotropic nature of
most biological tissue, we introduce the growth tensor in the
following generic format:

Le

F&=9'f0 @ fo+9°S0 ® So+ 9"y ® 1y ®)

where fysp and mn, are the unit vectors of the orthotropic
microstructure in the reference configuration and .9g:[9f,95,.9“]
denotes the set of internal variables which are often referred to as
growth multipliers. These take the value one in the plain elastic
case, are smaller than one for shrinkage, and larger than one for
growth. To complete the set of constitutive equations, we need to
specify the evolution of the internal variables 9

95 =KEP%) - @3(F%) or 9% =KEP®)- @E(MF) E)

A common format is to introduce mechanically driven growth
criteria ¢® which are only activated if a mechanical driving force
exceeds a certain physiological threshold level. They can either be
strain-driven, ¢*(F®), in analogy to finite strain damage, or stress-
driven, ¢®(M®), in analogy to finite strain plasticity. In addition, the
growth criteria are typically weighted by a matrix of growth
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Fig. 4. Kinematics of eccentric growth. Serial sarcomeres deposition induces
eccentric cardiomyocyte growth Fg=I+[.9”—1]f0 ®fo associated with cardio-
myocyte lengthening along the f,—axis, i.e., along the axis of cardiomyocyte
stretch. Sarcomere deposition is driven by a strain-driven growth criterion
¢"'=2°—2", which is activated if the elastic stretch ° exceeds a critical
physiological stretch level ™. In the above example for 9" = 1.4, F® characterizes
the serial deposition of 20 sarcomere units in length inducing a cell lengthening
from 50 sarcomeres at 100 pm to 70 sarcomeres at 140 um. F€ reflects a cell stretch
at a constant number of sarcomere units, with the individual sarcomeres
undergoing an elastic stretch A°.

functions k®$®) to ensure that the material does not grow
unboundedly. For the special case of scalar-valued growth, 9%, kg,
and ¢?® are of course scalars as well. Constitutive assumptions for
particular growth tensors (8) and evolution equation (9) for strain-
driven eccentric growth and stress-driven concentric growth will be
specified in Sections 2.2 and 2.3.

2.2. Strain-driven eccentric growth

In this section, we specify the generic set of equations to
characterize pathophysiological eccentric cardiomyocyte growth,
which we represent as a strain-driven, transversely isotropic,
irreversible process. Eccentric growth is characterized through
one single growth multiplier §' = 9% that reflects serial sarcomere
deposition and induces an irreversible cardiomyocyte lengthening
along the cell’s long axis f,, while there is no growth in the
transverse direction $°=9" =1, see Fig. 4. The generic growth
tensor F? introduced in Eq. (8) can thus be expressed exclusively
in terms of the eccentric growth multiplier 9'.

FE=1+[9'-11f, ®fo (10)
Motivated by physiological observations of volume-overload

induced cardiac dilation, we introduce a strain-driven evolution
law for the eccentric growth multiplier 9':

3 = k'O (1) 1)

It is based on an eccentric growth criterion ¢' weighted by a
function k':

1[om=_g'7" ek y
k'= = {9“‘3"_1 with i —mk” (12)

which is parameterized in terms of the sarcomere deposition
time t, the sarcomere deposition nonlinearity y, and the
maximum pathological cardiomyocyte stretch 9™*. For
example, a maximum serial sarcomere deposition of ™% =14
would allow for a possible deposition of 20 sarcomeres in length

resulting in a total cardiomyocyte length of 70 sarcomeres. This
would correspond to a cell lengthening from 100 to 140 um, see
Fig. 4. The eccentric growth criterion ¢" is expressed in terms of
the elastic overstretch A¢— 1",
Il

d)H _ )»E—Acrit _ %;v_ﬂcrit with % _ _% (13)
such that growth is activated only if the elastic stretch A° exceeds
a critical physiological threshold value i™. Note that the
derivatives in Eqs. (12.2) and (13.2) will later become essential
for the consistent algorithmic linearization within an incremental
iterative Newton Raphson scheme. In cardiac dilation, growth is
actually one dimensional, and the total cardiomyocyte stretch
Ji=I[fo-F -F-fo]V/2=,%)% along the long axis f, obeys a
multiplicative decomposition similar to the deformation
gradient itself. It can thus be expressed as the product of the
elastic stretch /%, i.e., the healthy cardiomyocyte stretch during
diastole, and the growth stretch 1$=9', ie. the pathological
cardiomyocyte stretch during eccentric growth. Our goal is to
solve the evolution equation (11) to determine the current growth
multiplier 9" for a given current deformation state F at the current
time t, assuming we know the growth multiplier Sﬂl at the end of
the previous time step t,. We introduce the following finite
difference approximation of the first order material time
derivative,

9 =19'—9'1/At (14)

where At := t—t, > 0 denotes the actual time increment. In the
spirit of implicit Euler backward type time stepping schemes, we
now reformulate the evolution equation (11) with the help of the
finite difference approximation (14) introducing the discrete
residual R' in terms of the unknown growth multiplier 9":

max_ qll17 )
R'=9'-9,— % Bma—x__ﬂ [% z—)f“t] At=0 (15)
Its linearization renders the tangent for local Newton iteration,
dr! o¢' ok!
K = o =1 {k af))" +¢' o | AL (16)

in terms of the expressions given in (12) and (13). The local
residual and the local tangent define the iterative update
of the eccentric growth multiplier '« 9'—R'/K'. Once we
have determined the growth multiplier ', we can update the
growth tensor F& =I+[9'-1]f, ®f, from Eq. (10), the elastic
tensor F¢ =F - F&! from Eq. (1), the elastic stress $°=2ay/6C®
from Eq. (6), and lastly, the second Piola Kirchhoff stress § from
Eq. (6):

S=F&1.8°. F&' with sezz% 17)

This second Piola Kirchhoff stress enters the equilibrium
equation (3), or, in the notion of the finite element method, the
expression for the global discrete residual. Its linearization with
respect to the total right Cauchy Green tensor C renders the
Lagrangian constitutive moduli L,

as| oF8] a9
ﬂ”{ﬁw} o2 (18)

dS(F.F&) oS

L=2=3c ~%c

which are an essential ingredient for the global Newton iteration.
The Lagrangian constitutive moduli L consist of four terms. The
first term 28S/0C

2 2% =[FE'QF8 1]: LS : [FE'gF5 Y (19)
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is nothing but the pull back of the elastic moduli L = 24S°¢/6C®
introduced in Eq. (7) onto the reference configuration. The second
term &S /oF®

O =P ES 1 SOF P BF L e 4 B

oF%
(20)
consists of two contributions that resemble a geometric and a

material stiffness contribution similar to classical nonlinear
computational mechanics. The third term aF /59"

oF®
9"
depends on the particular constitutive choice for the growth
tensor (10) and the fourth term 89" /aC

09 _ o9 ar _
oC =~ ol oC

=foefo (21)

[ea| [5zf0050] (22)

depends on the discrete formulation of the particular evolution
equation (11) for the eccentric growth multiplier 9'.

2.3. Stress-driven concentric growth

Next, we specify the generic growth equations from Section 2.1
to characterize pathophysiological concentric growth, which we
model as a stress-driven, transversely isotropic, irreversible
process. Motivated by physiological observations, we introduce
a single scalar-valued growth multiplier - = 9° that reflects the
parallel deposition of sarcomeres associated with transverse
cardiomyocyte growth on the microscopic scale, while there is
no growth in the fiber and sheet plane normal directions,
9f = 9" =1, see Fig. 5. The growth tensor can thus be expressed
as a simple rank one-update of the identity tensor along the
direction of the ventricular pressure which we assume to coincide
with the direction of the sheet vector sg:

FE=T1+[9"—1]so ® o (23)

Fig. 5. Kinematics of concentric growth. Parallel sarcomere deposition induces
concentric cardiomyocyte growth F& =I+[9"—1]sy ® sp associated with cardio-
myocyte thickening in the sheet direction sy, i.e., along the direction of applied
pressure. Sarcomere deposition is driven by a stress-driven growth criterion
¢ = tr(M®)—pit, which is activated if the trace of the elastic Mandel stress tr(M®),
i.e., the current pressure p, exceeds a critical physiological pressure level p<rit, In
the above example for - =20, F® characterizes the parallel deposition of
sarcomere units in the sheet direction inducing a doubling of the cell thickness
from 16.7 to 33.3 um. F° reflects a lateral pressure p at a constant number of
sarcomere units, with the individual sarcomeres being compressed in the sg
direction.

Motivated by clinical observations, we introduce a stress-driven
evolution equation for eccentric hypertrophic growth:

F N o Y {7 ) 24

To ensure that the cardiomyocytes do not thicken unboundedly,
the growth criterion ¢* is scaled by the function k*:

Co g g R
k T gmax_q with agl - [gmaxi‘gl]k (25)

Again, the three characteristic material parameters of this scaling
function all have a clear physical interpretation, T denotes the
sarcomere deposition time, ) calibrates the shape of the sarcomere
deposition curve, i.e., the degree of nonlinearity of the growth
process, and 3™ denotes the area fraction of maximum parallel
sarcomere deposition. For example, a maximum parallel sarcomere
deposition of 3™ =2 would allow for a possible doubling of the
cardiomyocyte thickness from 16.7 to 33.3 um, see Fig. 5. Lastly, we
introduce a stress-driven concentric growth criterion ¢

1 e e
¢ = tr(Me)—pt  with % - (‘;ﬂ (Se4CE Ssi 26)

Following an energetically conjugate approach, we choose the
overstress tr(M®)—pit, i.e., the difference between the trace of the
Mandel stress of the intermediate configuration M = C® - $¢ and
the critical physiological pressure level prit as the driving force for
growth (Epstein and Maugin, 2000; Himpel et al, 2005).
Conceptually speaking, tr(M°®) equals the trace of the Kirchhoff
stress which is nothing but the Cauchy stress weighted by the
Jacobian. In contrast to strain-driven eccentric growth, the
sensitivities for stress-driven concentric growth (25.2) and
(26.2), which will become essential for the consistent
algorithmic linearization, are slightly more complex and require
the calculation of the following derivatives:

oct

— _F&t .Ce—Ct. _Fg—1
o9t a9t a9t
oS¢ 1 oce

. 27
a9t 27 a9t @7

Again, we apply an implicit Euler backward scheme with
9 =197 941 At 28)

to obtain the following expression for the discrete local residual:

RE= 0t [y

max ql]7
1 {9 —9 } [tr(M®)—M® AL =0 (29)
The iterative update of the concentric growth multiplier
9« 9"—R*t/K' can then be expressed in terms of the
linearization of discrete residual (29),

g
),

dr* gt
K- = =1- k8 +¢°
e

— — - 30
dot 29+ G0
with the individual terms given in (25)-(27). Upon convergence of
9+, we can successively update the growth tensor F&=I+
[9-—1]so ® So from Eq. (23), the elastic tensor F¢ =F - F&~! from
Eq. (1), the elastic stress % = 26y /6C* from Eq. (6), and the second
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Piola Kirchhoff stress S from Eq. (6)
S=F&1.8° . F&~' with sezz% (31)

to finally evaluate the global equilibrium equation (3). Similar to
the eccentric growth case, the stress linearization with respect to
the total right Cauchy Green tensor C renders the Lagrangian
constitutive moduli L for the global Newton iteration:

L=27ds(:g:g) =2g Fg+2{aipng : ;’% ‘?CL (32)
The first term 26S/6C

2 g =[F*'®F¢]: L°: [F5'®F Y 33)
and the second term &S/oF®

;ng = —[F RS +SeFs |- [FS'gFs '] %Le [FE'QCt + C°RFE Y

34

are generic terms that do not depend on the particular growth
law. They are thus identical to the case of eccentric growth case in
(19) and (20). The third term

OF®

Py So ® So (35)
which depends on the particular constitutive choice for the
growth tensor (23) is nothing but the structural tensor sy ® So.
The fourth term contains the partial derivative of the converged
growth multiplier 9* with respect to the right Cauchy Green
tensor of the reference configuration C:

29t 89t act  [ke 1 o
L e[l o] 36)

This term is a bit more complex than its strain-driven counterpart
(22). For the sake of brevity, we have introduced the abbreviation
LO=[F& I@F& ] L°: [FE'®F¢Y for the pull back of the elastic
moduli L® =238%/aC® from the grown intermediate configuration
to the undeformed reference configuration.

3. Results

In this section, we explore the basic features of the strain-
driven eccentric model and the stress-driven concentric model for
cardiac growth. We compare both models using a generic
bi-ventricular heart geometry that we briefly outline at the
beginning of this section.

3.1. Generic bi-ventricular heart model

To avoid geometric effects resulting from complex patient-
specific geometries, we explore our new multiscale algorithm
using the generic bi-ventricular heart model illustrated in Fig. 6.
In this prototype model, the left and right ventricles, the lower
chambers of the heart, are represented through two truncated
ellipsoids with heights of 70 and 60 mm, and radii of 30 and
51 mm, respectively, such that the right ventricle blends smoothly
into the left ventricle from apex to base (Goktepe et al., 2010a).
The left ventricle which pumps oxygenated blood into the body
operates at a pressure of 100 mmHg. The right ventricle pumps
deoxygenated blood into the lungs at a pressure of 20 mmHg
(Goktepe et al., 2010b). With 12 mm, the left ventricular wall is
thicker and its muscle is significantly stronger than the 6 mm
thick right ventricular wall. For the lack of better knowledge, we
apply homogeneous Dirichlet boundary conditions to all nodes on
the basal plane. In addition, to mimic the boundary conditions

Fig. 6. Generic bi-ventricular heart model generated from two truncated ellipsoids
(Goktepe et al., 2010a), with heights of 70 and 60 mm, radii of 30 and 51 mm, and
wall thicknesses of 12 and 6 mm, respectively. In the healthy heart, cardiomyo-
cytes are assumed to be cylindrical, 100 um long with a diameter of 16.7 pm. They
consist of 50 serial sarcomere units in length and 91 parallel units per cross
section, each of them 2 pm long and 2 um in diameter. They are arranged helically
around the long axis of the heart with a transmurally varying inclination of —55°
in the epicardium, the outer wall, to +55° in the endocardium, the inner wall,
measured with respect to the basal plane.

imposed by the surrounding tissue, we support all nodes of the
epicardium by linear springs with a stiffness of k=10"3N/mm
both in the radial and tangential directions. The generic bi-
ventricular heart model is discretized with 3910 linear tetrahedral
elements connected at 1028 nodes. In the healthy heart,
cardiomyocytes are assumed to be cylindrical, 100 pm long with
a diameter of 16.7 pm. They consist of 50 serial sarcomere units in
length and 91 parallel units per cross section, each of them 2 um
long and 2 pum in diameter. The individual cardiomyocytes are
arranged helically around the ventricles. Here, we assume that the
fiber directions f, vary transmurally from an inclination of —55°
in the epicardium, the outer wall, to +55° in the endocardium, the
inner wall, where the inclination is measured with respect to the
basal plane, see Fig. 6. The inclination is assumed to decay
gradually from base to apex towards a final value of 0°. For the
sake of simplicity, the myocardial sheet directions sy are assumed
be oriented normal to the endocardium and epicardium. To focus
on the impact of growth, we assume a generic isotropic Neo-
Hookean baseline elasticity and specify the free energy as
¥ =17In*(J®)+ 1 u[C® : I-3-2In(j®)]. According to Eq. (6), the
elastic second Piola Kirchhoff stress S =2da)/oC® can then be
expressed as §¢ = [AIn(J¢)—u]C®~' + ul, and the elastic constitutive
moduli L®=208%/0C¢ introduced in Eq. (7) take the following
explicit representation L®=AC"!® C®! 4+[u—Alnge)|[C°®CE+
C°®C°]. The Lamé parameters for the baseline elastic response
are chosen to be 1 =0.577 MPa and p = 0.385 MPa. The extension
of the model to a more physiological orthotropic baseline
elasticity along the fiber, sheet, and sheet plane normal
directions, however, is straightforward and would only affect
the calculation of the elastic second Piola Kirchhoff stress
§¢=20y/0C® and the corresponding elastic constitutive moduli
L® =26S°¢/06C® (Goktepe et al., 2010a; Holzapfel and Ogden, 2009).
We apply the following limiting growth function k(3)=
(9™ —91/[9™*~1]]" /7 for both eccentric and concentric growth
(Lubarda and Hoger, 2002). For this function, the growth rate 4
decays smoothly until the growth multiplier 3 has reached its
maximum value 3™, while the sarcomere deposition time and
the deposition nonlinearity are characterized through 7 and 7y,
respectively (Goktepe et al., 2010c). We choose the sarcomere
deposition time to 7=3.2MPas and the deposition nonlinearity
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to y = 2.0, but denote that at this point their choice is relatively
generic since they only affect the speed of growth, but not the end
result. In the future, however, we will use these two parameters
to calibrate our model against long-term chronic clinical
observations. All the above features will be the basis for the
examples in Sections 3.2 and 3.3 to allow for a direct comparison
of the two different growth models.

3.2. Strain-driven eccentric growth

The following example documents our attempts to simulate
strain-driven eccentric growth in terms of the equations intro-
duced in Section 2.2 using the generic bi-ventricular heart model,
the loading and boundary conditions, and the material para-
meters outlined in Section 3.1. In addition, we need to specify two
additional growth parameters, the physiological strain threshold
/' =1.01 above which growth is activated and the maximum
growth value 9™ =1.50. Fig. 7 illustrates the heterogeneous
distribution of eccentric growth with a clear transmural variation

Fig. 7. Strain-driven eccentric growth. Overall, eccentric growth is clearly
heterogeneous with a transmural variation in serial sarcomere deposition.
Cardiomyocytes in the endocardium, the inner wall, reach their maximum length
of 150 pm through the serial deposition of 25 additional sarcomere units of 2 pum
each. Cardiomyocytes in the epicardium, the outer wall, reach a stable state at a
length of 130 um through the serial deposition of 15 additional sarcomere units.
Eccentric growth along the septum is almost identical to eccentric growth along
the free wall initiating an overall shape change from elliptical to spherical.

\
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in serial sarcomere deposition. Cardiomyocytes located in the
endocardium, the inner wall, reach their maximum length of
150 um through the serial deposition of 25 additional sarcomere
units with a length of 2 um each. Cardiomyocytes located in the
epicardium, the outer wall, reach a stable state at a length of
130 um through the serial deposition of 15 additional sarcomere
units. The temporal evolution of eccentric growth is illustrated in
Fig. 8. Strain-driven eccentric growth manifests itself in a
significant increase in cavity size while the wall thickness
remains virtually unaltered. As growth progresses, the eccentric
growth multiplier 9" gradually increases from its baseline value of
9'=1.00 to its maximum value of 3™*=1.50 as additional
sarcomeres are deposited in series to allow the individual
cardiomyocytes to grow in the longitudinal direction. In
accordance with Fig. 7, the growth multiplier takes its
maximum value of §' =9™*=1.50 at the inner wall of the
horizontal section, while the outer wall displays a slightly lower
value of §' = 9™* = 1.30. Although eccentric growth may vary
across the ventricular wall, growth along the septum is almost
identical to growth along the free wall. The eccentric growth
multiplier 9" is largest at the endocardium, the inner wall, and
smallest at the epicardium, the outer wall. Since the base is
supported through Dirichlet boundary conditions, growth is
constrained around the annulus region. Overall, eccentric
growth is smallest at the base and at the apex, and largest in
the midsection, initiating a shape change from elliptical to
spherical (Cheng et al., 2006). The strain-driven eccentric
growth simulation illustrated in Fig. 8 is excellent qualitative
agreement with the pathophysiological characteristics of volume-
overload induced cardiac dilation (Kumar et al., 2005): (i) a
progressive increase in cardiac diameter and mass, (ii) an
alteration of cardiac form from elliptical to spherical, (iii) a
relatively constant wall thickness, and (iv) a significant increase of
the apex to base distance.

3.3. Stress-driven concentric growth

Our second example illustrates the performance of our growth
model in the context of stress-driven concentric growth using our
generic bi-ventricular heart model. Again, the geometry, bound-
ary conditions, and loading are adopted from Section 3.1. The two
additional growth parameters are the physiological threshold
pressure pit=0.012MPa and the maximum growth threshold
9™ = 3.00. Fig. 9 demonstrates the heterogeneous perpendicular
sarcomere deposition within the individual cardiomyocytes with

1.375 1.500

Fig. 8. Strain-driven eccentric growth. The eccentric growth multiplier 9" gradually increases from 1.00 to 1.50 as the individual cardiomyocytes grow eccentrically. On the
structural level, eccentric growth manifests itself in a progressive dilation of the left ventricle accompanied by a significant increase in cardiac mass, while the thickness of

the ventricular wall remains virtually unchanged.
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a maximum sarcomere deposition in the epicardium, the outer
wall. Cardiomyocytes located in the epicardium reach their
maximum thickness of 50 um through the parallel deposition of
182 sarcomere units at 9+ = 3™* = 3.0. Cardiomyocytes located
in the endocardium, the inner wall, reach a stable state at a
thickness of 31.4pum through the parallel deposition of 84
additional sarcomere units reflected through 9 =1.92. Since
the septal wall receives structural support through the pressure in
the right ventricle, concentric growth at the septal wall is slightly
less pronounced than at the free wall. Fig. 10 illustrates the
temporal evolution of the growth multiplier 9* which increases
from 1.00 to 3.00 as the individual cardiomyocytes grow
concentrically. On the structural level, concentric growth
manifests itself in a progressive transmural wall thickening to
withstand higher blood pressure levels while the overall size of
the heart remains virtually unchanged. In contrast to the example
of strain driven eccentric growth, concentric growth starts at the
outer wall, and is more pronounced at the free wall than at the
septum. This is in excellent agreement with experimental findings

Fig. 9. Stress-driven concentric growth. Concentric growth is clearly heteroge-
neous with a transmural variation in parallel sarcomere deposition. Cardiomyo-
cytes in the endocardium, the inner wall, reach a stable state at a thickness of
31.4pm through the parallel deposition of 84 additional sarcomere units.
Cardiomyocytes in the epicardium, the outer wall, reach their maximum thickness
of 50um through the parallel deposition of 182 sarcomere units. Concentric
growth at the free wall is slightly more pronounced than at the septum.
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that reported a regional variation in cell thickening with a more
pronounced concentric growth in the free wall as compared to the
septum, and with a more pronounced cell thickening in the
epicardium as compared to the endocardium (Smith and Bishop,
1985). In summary, the stress-driven concentric growth
simulation illustrated in Fig. 10 is in excellent qualitative
agreement with the pathophysiological characteristics of cardiac
wall thickening: (i) a progressive wall thickening, (ii) a relatively
constant heart size, and (iii) a potential occlusion of the outflow
tract through pronounced septal growth.

4. Discussion

Eccentric and concentric cardiac growth are serious maladap-
tive conditions in which the heart muscle undergoes chronic
volumetric changes in response to alterations in its mechanical
environment. In this manuscript, we have developed a novel
multiscale model for strain-driven eccentric growth and stress-
driven concentric growth and demonstrated its computational
realization within a geometrically nonlinear finite element
framework. We have adopted the commonly accepted framework
for volumetric growth based on the multiplicative decomposition
of the deformation gradient F = F® - F% into an elastic part F* and a
growth part Fe. Our model is based on the key kinematic
assumption that the individual cardiomyocytes deform affinely
with the surrounding myocardial tissue. This allowed us to
introduce the growth tensor F? and its evolution equations in
terms of morphological changes of the individual cardiomyocytes
induced by the generation and deposition of novel sarcomere
units. A recent study exploring cardiomyocytes with different
length to thickness ratios confirms the close correlation between
cardiomyocyte shape and intracellular sarcomeric architecture
(Bray et al., 2008; Geisse et al., 2009), which is the basic paradigm
for the proposed model.

4.1. Strain-driven eccentric growth

We have presented a novel multiscale continuum model for
pathological eccentric growth as a strain-driven, transversely
isotropic, irreversible process. Its growth tensor F? is defined as a
rank-one update of the unity tensor in terms of the eccentric
growth multiplier 9" acting along the cell's long axis f,.

‘"\

Fig. 10. Stress-driven concentric growth. The concentric growth multiplier 3 gradually increases from 1.00 to 3.00 as the individual cardiomyocytes grow concentrically.
On the structural level, concentric growth manifests itself in a progressive transmural wall thickening to withstand higher blood pressure levels while the overall size of the
heart remains virtually unaffected. Since the septal wall receives structural support through the pressure in the right ventricle, wall thickening is slightly more pronounced

in the free wall where the wall stresses are higher.
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On the molecular level, eccentric growth, which can be
interpreted as serial sarcomere deposition, is activated once the
elastic cardiomyocyte stretch A° exceeds a critical physiological
threshold level A“™. When experimentally subjected to uniaxial
overstretch, isolated cardiomyocytes have been reported to
display an acute sarcomere lengthening in vitro (Mansour et al.,
2004). However, it is well-accepted that a constant sarcomere
length is required for optimal tension development. In an attempt
to maintain maximum force generation, sarcomeres are reported
to recover their optimal resting length of 1.9—2.1 um through
new protein synthesis within a couple of hours. This effect is
inherently incorporated in the present model.

On the cellular level, the evolution of eccentric growth is
governed by the growth criterion ¢' = 1°—)"" scaled by a growth
function k' parameterized in terms of three material constants. In
contrast to phenomenological growth laws reported in the
literature (Ambrosi et al.,, 2009), our three material parameters
§™maX 'z, and y have a clear physical interpretation. The maximum
serial sarcomere deposition which we have chosen to 3™ =1.5
ensures that cardiomyocytes do not lengthen unboundedly. In
freshly isolated cardiac tissue, compared with a healthy control
group, cardiomyocytes from patients with dilated cardiomyo-
pathy were reported to be 40% longer, while the cell widths
displayed no statistically significant differences. The length of the
individual sarcomeres, however, was the same in both groups
(Gerdes et al., 1992). This is in excellent agreement with the
effects captured by our model as demonstrated in Fig. 7. In our
model, the temporal evolution of the serial sarcomere deposition
is governed through two parameters, the sarcomere deposition
time 7t and the sarcomere deposition nonlinearity y. Since we
were only interested in the final converged end result of growth,
the values of these parameters did not play a key role in the
present analysis. A recent in vivo study of volume-overload in
rabbits suggests that cardiomyocytes are able to add approxi-
mately one sarcomere per day and that the initial linearity of
sarcomere deposition decays after approximately four weeks
(Yoshida et al., 2010). We are currently calibrating the parameters
7 and y based on the serial sarcomere increase from 62 to 95 units
during the 16-week long experiment reported in this study.
Recent attempts to decipher the pathways of mechanotransduc-
tion during hypertrophic cardiomyopathy explore the role of the
extracellular matrix on sarcomerogenesis (Parker et al., 2008) and
force generation (Tracqui et al., 2008), and might provide further
guidelines for a refinement of our model.

On the macroscopic level, maladaptive cardiomyocyte
elongation manifests itself in the dilation of the left ventricle,
a change in ventricular shape from elliptical to spherical, and a
decrease in ejection fraction, while the wall thickness typically
remains unaltered (Kumar et al.,, 2005; Opie, 2003). These
effects are nicely captured by the present model as documented
in Fig. 8.

4.2. Stress-driven concentric growth

Upon slight modifications, our generic continuum growth
model has also been able to capture pathological concentric
growth, which we have represented as a stress-driven, transver-
sely isotropic, irreversible process. Similar to eccentric growth, its
growth tensor F® is defined as a rank-one update of the unity
tensor, this time parameterized in terms of the concentric growth
multiplier " acting along the sheet direction so. On the molecular
level, concentric growth is characterized through a parallel
deposition of sarcomere units. It is activated once the trace of
the Mandel stress of the intermediate configuration tr(M°¢)
exceeds a physiological pressure level pit. Experimentally

induced stress-driven hypertrophic wall thickening in ferrets
revealed a regional variation in cell thickening with a more
pronounced concentric growth in the free wall as compared to the
septum, and with a more pronounced cell thickening in the
epicardium as compared to the endocardium (Smith and Bishop,
1985). This regional variation is in excellent agreement with our
prediction of the parallel sarcomere deposition illustrated in
Fig. 9. It corresponds nicely to the spatial distribution of the
concentric growth multiplier - documented in Fig. 10.

On the cellular level, the evolution of concentric growth is
governed by the growth criterion ¢ = tr(M®)—p®it scaled by a
growth function k*, again parameterized in terms of three
material constants. The maximum parallel sarcomere deposition
which we have chosen to 9™ = 3.0 ensures that cardiomyocytes
do not thicken unboundedly. This is in nice agreement with the
relative increase in transverse cardiomyocyte diameters from
15um up to 40um reported for pressure-overload induced
hypertrophic cardiomyopathy (Kumar et al., 2005).

On the macroscopic level, concentric cardiomyocyte growth
has been reported to potentially translate into wall thicknesses of
more than 3 cm, while the overall size of the heart might remain
virtually unaffected (Maron and McKenna, 2003). This is in
excellent quantitative agreement with the computationally pre-
dicted wall thickness and the overall cardiac size documented
in Fig. 10.

4.3. Summary

The central goal of this manuscript was the introduction of a
generic model for eccentric and concentric growth that allows
exploration of the impact of growth on different scales. For the
sake of transparency, we have modeled the baseline properties of
cardiac tissue as isotropic and passive. However, we are currently
extending the model to incorporate a more physiological
orthotropic baseline elasticity for the passive myocardium
parameterized in terms of the fiber, sheet, and sheet plane
normal directions (Goktepe et al., 2010a; Holzapfel and Ogden,
2009). Along the lines of a true multiscale approach, the response
along the fiber direction can then be calibrated by means of
experimentally measured length-tension relations. Moreover, we
are in the process of including electrically activated contraction
for the individual cardiomyocytes to explore the long-term
impact of alterations in active and passive stress on cardiac
growth (Goktepe and Kuhl, 2009, 2010; Goktepe et al., 2010d;
Kotikanyadanam et al.). For more realistic simulations, it would
also be essential to begin the simulation with a loaded state at
growth equilibrium and include effects of residual stress (Omens
et al., 1998; Rodriguez et al., 1994). Hypertrophy would then be
triggered by changes in loads from this equilibrium state. Taken
altogether, this will allow us to predict the overall impact of
eccentric and concentric growth on clinically relevant global
metrics of cardiac function, such as the end systolic and end
diastolic volumes and the ejection fraction. Overall, we believe
that our cardiac growth model has tremendous potential in
helping to predict, and potentially prevent, maladaptive growth of
the heart. We have demonstrated that it is in excellent agreement
with experimental findings on the modelular (sarcomere), cellular
(cardiomyocyte), tissue (myocardium), and organ (heart) levels.
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