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Diabetes is a disease of insulin insufficiency, requiring
many to rely on exogenous insulin with constant moni-
toring to avoid a fatal outcome. Islet transplantation is
a recent therapy that can provide insulin independence,
but the procedure is still limited by both the availability of
human islets and reliable tests to assess their function.
While stem cell technologies are poised to fill the short-
age of transplantable cells, better methods are still
needed for predicting transplantation outcome. To en-
sure islet quality, we propose that the next generation of
islet potency tests should be biomimetic systems that
match glucose stimulation dynamics and cell microen-
vironmental preferences and rapidly assess conditional
and continuous insulin secretion with minimal manual
handing. Here, we review the current approaches for
islet potency testing and outline technologies and meth-
ods that can be used to arrive at a more predictive
potency test that tracks islet secretory capacity in a rel-
evant context. With the development of potency tests
that can report on islet secretion dynamics in a context
relevant to their intended function, islet transplantation
can expand into a more widely accessible and reliable
treatment option for individuals with diabetes.

Islet transplantation has emerged as a promising treat-
ment for the most severe cases of insulin-dependent di-
abetes, offering the potential for a complete reprieve from
regular insulin injections. Transplanted islets augment
a recipient’s ability to respond to elevated glucose levels
in the bloodstream by secreting insulin. In contrast to the
surgical approach of a whole pancreas transplant, islet
transplantation involves a relatively risk-free infusion of
islets isolated from a donor pancreas into the portal vein of

a recipient’s liver. While both methods require immuno-
suppression, islet transplantation boasts rates of insulin
independence on par with whole pancreas transplantation
and confers advantages including prevention of severe
hypoglycemic events and improvements in overall glucose
control (1–3). Islet transplantation is now a standard of
care in several countries, but it still awaits U.S. Food and
Drug Administration approval (1). Most recently, after an
impressive collaboration across eight U.S. sites in a phase
III clinical trial, .70% of recipients achieved clinical goals
after 2 years, with a stark reduction in severe hypoglycemic
events and insulin dependence (4,5).

While islet transplantation is a therapy with potential,
its success has been hindered by the poor availability of
functional human islets. Efforts have begun in establishing
standards for generating islet products (5), but human
islets from cadaveric pancreata are scarce due to stringent
inclusion and exclusion criteria, as well as an involved islet
isolation process (6). Furthermore, the quality of these
preparations continues to vary despite protracted efforts
to identify trends in their function based on donor or
isolation information (7,8). Initial infusions of cadaveric
islet preparations that have passed current quality stand-
ards often fail to yield insulin independence (6,9). The low
success rate for insulin independence necessitates sub-
sequent dosing and represents a costly and time-consuming
burden that can also leave individuals with diabetes vul-
nerable in the interim between infusions. Stem cell ther-
apies have recently become available as a possible alterna-
tive source of tissue for transplantation (10,11) and are
poised to address the shortage of cadaveric islets by pro-
viding an unlimited and controlled source for insulin-
producing cells. However, these cell therapies are still
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relatively nascent. Although work has been done to im-
prove their application to human transplantation (12–19),
further development is needed for large-scale commercial-
ization of differentiation protocols with consistent quality
and proven safety and function prior to use in humans.
Regardless of cell source, the inability to predict functional
quality prior to product release remains a common hurdle
(20).

For facilitation of the manufacturing quality control of
insulin-producing cells and for informing formal medical
recommendations known as clinical practice guidelines (21),
there is a pressing need to develop quantifiable metrics that
reliably test the function of cells in a range of physiological
conditions. We argue that current potency testing fails to
provide cues from the native microenvironment that reg-
ulate islet function and thus propose that the next gener-
ation of islet potency tests should be biomimetic systems
that can assess conditional insulin secretion pretransplant
with minimal manual handing or measurement. Matching
the spatiotemporal stimuli that elicit normal islet behavior
in vivo while dynamically assessing their functional poten-
tial for transplantation provides the framework for devel-
oping a more predictive potency test. This article outlines
the existing standards for determining islet potency and
highlights proposed methods that should supplement or
replace the current complement of tests. We specifically
consider the use of technologies that can measure insulin
secretion in response to dynamic stimulation, with the
addition of microenvironmental cues to provide a relevant
context for assessing islet behavior.

Islet Procurement and Potency Testing for Good
Clinical Practice

Current Practices
Clinical practice guidelines (21) have outlined accepted
procedures for islet manufacture and transplantation (22).
Prior to potency testing, islets are isolated from the
surrounding exocrine tissue of donor pancreata (Fig. 1).
The isolation process typically occurs in a cell processing
center in compliance with Current Good Manufacturing
Practice and Current Good Tissue Practice guidelines that
stem from recommendations from the U.S. Food and Drug
Administration (23). Islet isolation has been gradually
refined to increase both purity and yield, leading to Clinical
Islet Transplantation (CIT) Protocol CIT-07, a protocol
sponsored by the National Institute of Diabetes and Di-
gestive and Kidney Diseases and the National Institute of
Allergy and Infectious Diseases for a phase III clinical trial
in North America intended to demonstrate the safety and
efficacy of islet transplantation for type 1 diabetes (24).
This recent multisite collaboration produced a series of
protocols aimed at standardization across isolation and
transplantation centers (5). The study successfully dem-
onstrated the efficacy of islet transplantation for lowering
HbA1c levels, drastically reducing the incidence of severe
hypoglycemic events, and, in some cases, allowing for
insulin independence (4,5). However, given the resource

intensiveness and health risks of the procedure, methods
that can facilitate or improve positive clinical outcomes
should be considered. Despite rigorous investigation of
many factors relating to isolation, identification of param-
eters that consistently contribute to the potency of an islet
batch remains elusive (8,25,26). Most notably, a single islet
infusion is often insufficient for a recipient to attain full
insulin independence, thus requiring one or more subse-
quent infusions, along with their associated costs and risk of
complications (4,5). Infusions that provide less therapeutic
benefit could stem from graft failure (6) due to complicating
factors such as peritransplant glycemic control, microangi-
opathy, advanced glycation end products, and/or autoreac-
tive T cells (27,28). Immunosuppression, which affects islet
revascularization and insulin secretion (29), is yet another
factor. Still, the use of poor-quality islets that have not been
effectively evaluated for function prior to transplantation
may contribute to the ineffectiveness of some islet infu-
sions. Functional potency tests are therefore a necessary
component of clinical practice guidelines for islet trans-
plantation that can screen out poorer-quality islet prepa-
rations to reduce the number of infusions needed to provide
clinical benefits. Isolation of islets disrupts and even
removes much of the surrounding extracellular matrix
(ECM) through enzymatic digestion and mechanical sepa-
ration (30), which may partially explain some of the
discrepancies in function for transplantation (31,32). Gen-
erally speaking, while cadaveric islets are stripped of their
endogenous surroundings, stem cell–derived products are
generated without many of these native cues.

Establishing potency tests to set islet batch quality
criteria was a stated secondary objective of CIT-07 (24),
and those adopted (5) were generally consistent with com-
mon practices (6,23). In current islet transplantation prac-
tice, the purity of a preparation is typically assessed with use
of dithizone, which preferentially stains zinc that is highly
concentrated in b-cells. Islet counts are also conducted with
this stain by examining the cross-sectional areas of indi-
vidual islets and converting these into islet equivalents
(IEQ), a unit corresponding to the size of a 150-mm-
diameter islet. The islet dose is then defined as the number
of IEQ delivered to a recipient normalized by recipient’s
weight, with units of IEQ/kg. Prior to transplantation,
viability is also determined as a measure of membrane
integrity. Stains such as propidium iodide highlight DNA
exposed by dead cells lacking an intact membrane, while
a secondary stain such as fluorescein diacetate will become
fluorescent in viable cells with sufficient endogenous enzy-
matic activity. A functional test of potency often relies on
quantifying the glucose-stimulated insulin secretion (GSIS),
where a portion of the isolated islets are treated first with
a low-glucose stimulus and then a high-glucose stimulus,
and the resulting insulin secreted in each condition is
measured with an ELISA. The stimulation index, which is
the ratio of insulin produced in high- and low-glucose
conditions, is then considered a fundamental indication
of the conditional release of insulin in response to glucose.
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Sterility testing is also conducted for looking for growth of
a range of pathogens, as well as measurement of endotoxin
levels.

As shown in Fig. 2, islet product release criteria including
those used in CIT-07 typically specify that the purity should
be at least 30% and the viability at least 70% for use in
transplantation (5). An islet dose of .5,000 IEQ/kg is the
minimum recommended islet dose to achieve a noticeable
clinical result (5), although in practice higher doses are often
preferred (1,33). While GSIS may be conducted in a pre-
liminary assessment of an islet preparation, insulin secre-
tion is not used to determine whether a batch of islets is
suitable for transplantation (Fig. 2). Indeed, although GSIS
was performed twice per islet lot during the CIT-07 study,
neither GSIS nor sterility was strictly considered a product
release criterion because of how challenging it can be to
complete these techniques prior to transplantation (5). As
such, the GSIS conducted in the study had no bearing on
selection of islet lots for transplantation. Furthermore,
Ricordi et al. (5) report that two lots of islets actually failed
the outlined GSIS criterion (i.e., stimulation index.1) after
GSIS results were available, even though these lots had
already been used for transplantation in patients. A more
efficient potency test could prevent the use of islet prep-
arations that have low functional potency in transplanta-
tion. It is also important to note that, with the exception of
islet dose (34), none of the aforementioned criteria are
reliable predictors of transplantation success (9,23).While it
is unclear what specific circumstances led to a secondary
infusion in each case, inadequate islet screening may par-
tially explain why in the CIT-07 study an initial infusion was
not sufficient to achieve insulin independence in a majority
of cases (4,5). Adjustments to the clinical practice guidelines
for islet transplantation must include the use of more
predictive potency tests to ensure that only islet products
with high functional quality are delivered to recipients.

Alternative Potency Tests
In light of the poor predictive nature of the standard islet
potency metrics, alternative approaches have been con-
sidered. Several proposed microscopy methods and other
imaging motifs are used, with the intention of replacing
or streamlining the traditional tests. Examples include
digital approaches for IEQ and islet purity determination
(35–37), improved methods for imaging zinc on the mem-
brane of b-cells (38,39), implementation of Raman spec-
troscopy to locate regions of insulin and glucagon (40), the
use of immunohistochemistry (41) or islet size (42), and
a method for evaluating b-cell apoptosis (43). As a sub-
stitute for measuring insulin secretion, techniques have
been explored to look at the electrophysiological activity
of islets by measurement of their elicited electrical poten-
tials (44) or calcium signaling (45) in response to glucose
stimulation. Similarly, given the importance that metab-
olism plays in insulin secretion, other tests have begun to
look at the metabolic state of the islets, with assessment
of mitochondrial health (46), ADP-to-ATP ratio (47), or

reactive oxygen species (48). In particular, the possible
utility of either static or glucose-stimulated oxygen con-
sumption rate (OCR) has become an intense area of focus
(33,34,49–52). In the era of genomic analysis, various
groups have also begun to search for unique biomarkers,
identifying specific miRNA (miRNA-375, miRNA-200c)
(53,54), long noncoding RNA (MALAT1) (55), or tran-
scripts (56,57), correlated with either islet isolation quality
or transplantation outcome. Multiparametric approaches
have also attempted to look at a combination of some of
these metrics (58,59).

A number of the studies that recommend a specific
potency test have in fact compared several potency tests
but often differ in their conclusions regarding predictive
potential of a given test. This inconsistency across the
literature likely speaks to the variability in the islet prep-
arations (8), differences in transplant success criteria, and
possibly the fact that such correlations—especially in
studies with small cohorts—may be localized findings
that are not reproducible. Many tests are not specific to
b-cell function, or undertaking them would require sig-
nificant time or resources, limiting their potential value as
a potency test that can be conducted prior to transplan-
tation. Not surprisingly, it has long been shown that the
total islet dose introduced into a patient is a significant
predictor of transplant success, since a higher mass of
tissue is more likely to include some functional tissue (34).
However, the use of islet dose as a metric can be lacking
because islet mass alone does not consider the true via-
bility or function of the tissue being introduced (34). Of
the alternative potency tests that have been proposed, the
most promising thus far are those that capitalize on recent
transplantation trials in humans, where the OCR dose
(OCR normalized to DNA content and multiplied by islet
dose) and transcription levels of specific miRNAs associ-
ated with islet damage (miRNA-375, miRNA-200c) have
separately been found to correlate to clinical outcomes
(33,34,53). An advantage of both methods is that the
measurement of either OCR dose or miRNA levels may
be rapidly conducted (49,55). However, while these results
represent an exciting step forward, they cannot yet predict
clinical outcomes. These metrics likely do not fully capture
the functional potential of islet preparations, since neither
measurement was assessed in a dynamic context. Indeed,
an islet’s fundamental role involves sensing dynamic glu-
cose levels and secreting hormones as a response, so it
should be imperative to understand stimulus-response
coupling. Lending support to this idea, Kurian et al.
(57) found that a set of human islet genes whose expres-
sion was most predictive of diabetes reversal in mice after
transplantation correlated with glucose sensing and did
not overlap with pathways associated with either oxygen
consumption or apoptosis, indicating that damage to the
islet tissue and metabolic activity alone may not offer
a complete picture. A separate study also found that
human islets show evidence of b-cell dedifferentiation
after isolation, pointing to the need for a potency test
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that accounts specifically for b-cell function (32). To-
gether, the findings suggest that for development of
clinical practice guidelines with a sufficiently complete
set of potency tests, unique metrics of overall islet health
or basal metabolismmay need to be augmented by a metric
that is more specific to functional hormone release.

The Need for a Better Secretion-Based Potency Test
While it is necessary to evaluate insulin secretory ability of
islets prior to transplantation, existing standards for the
evaluation of islet secretory function fail to meet the
efficiency and accuracy needed for better clinical practice
guidelines. The transplantation of human islets into rodents
has previously been considered a gold standard for assessing
the secretory function of an islet preparation, with corre-
lations drawn between positive clinical outcomes posttrans-
plant in humans and those in both diabetic (60) and
normoglycemic (61) mice. However, aside from a consider-
ation of species differences (45,62,63), these animal models
are not suitable for predictive potency testing because they
take days or weeks to achieve a reliable result and can

require complicated protocol coordination (9,64). As men-
tioned previously, static GSIS is another standard method
of evaluating the islet conditional response to glucose
stimulation. Unfortunately, static GSIS is typically consid-
ered a poor predictor of transplantation outcome (34). The
insufficient predictive power of static GSIS may very well
be due to the low time resolution, as insulin collects for as
much as an hour under each condition, during which time
the continuous accumulation of insulin may negatively
disrupt insulin secretion (45). Perifusion methods have
also been used to stimulate islets with pulses of varied
glucose concentrations delivered under flow, in a variation
known as dynamic GSIS (45,65). Insulin secretion from the
same isolations of human islets assayed in static GSIS and
dynamic GSIS systems have not been found to be corre-
lated (8), indicating that the two techniques are indeed
measuring islet function differently. Although dynamic
GSIS systems are capable of sampling insulin secretion
from islets down to a minute resolution (45) and would
represent an improvement over static GSIS, the technique
still suffers from a bottleneck in insulin quantification.

Figure 1—Hierarchical structure of the pancreatic islet. A: Human islets reside in the pancreas as sparse “islands” of endocrine cells
embedded within exocrine tissue. Blood vessels supply individual islets with glucose and collect secreted hormones to send throughout the
body. The most common cell type within the islet is the b-cell, responsible for secreting insulin when glucose levels are elevated following
a meal. Insulin travels with glucose in the bloodstream to cells of the body, allowing those cells to take in the glucose. B: Blood vessels
penetrating into human islets form a double basement membrane with the islet cells, comprised of membrane-bound integrins that link the
actin within the b-cells to a network of ECM proteins. Integrins are depicted binding laminins, which form a trimeric branching network that
connects to tetrameric collagen type IV networks via bridging molecules such as nidogen.
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Typically, islet secretions are collected into a multiwell
plate, and the insulin contained in the wells is measured
separately with ELISA. The lack of coupling between islet
stimulation and insulin measurement represents a time
burden, and the total time and effort required to achieve
insulin secretion measurements are the reason that trans-
plantation is often done before GSIS results have been
finalized (5). Criticism of GSIS as it is currently practiced
should also consider that this technique likely suffers from
some of the highest variability of any islet quality metric.
For both static and dynamic GSIS, low-glucose treatments
in literature range from 1 mmol/L to 6 mmol/L (8,25),
while high-glucose treatments range from 11 mmol/L to
28 mmol/L (45,48). Exposure times and temperatures at
each condition are also varied.

The success of islet transplantation desperately depends
on the introduction of functional islets, but current meth-
ods for testing insulin secretion are too slow or require too
much effort for getting useful results prior to islet trans-
plantation. Mirroring the steps the field has taken to rally
around standards of practice for islet isolation and trans-
plantation (5,7,66,67), every effort should be made to
incorporate an in vitro potency test for measuring human
islet secretory function. Inspiration for such a potency test
must come from the body. Islets receive designated perfu-
sion in the native human pancreas (68), and will receive
a continuous supply of oxygen, nutrients, and glucose once
infused into the portal vein following transplantation (Fig.
1A). Thus, the ability to obtain quality information in the
form of secretion data will rely on the use of dynamic
stimulation with integrated insulin sensing capabilities, and
the relevance of the data to transplantation will depend on

mimicking the physiological conditions islet cells would
normally experience in vivo.

Dynamic Insulin Sensing in a Biomimetic Context

Integration of Insulin Sensors
By reliance on physical properties that can be easily
sampled and digitized with available sensing technologies,
promising optical and electromagnetic techniques have been
developed to assess the cell-specific functional health of
neurons (69–71), cardiomyocytes (72–78), and endothelial
or epithelial cells (79–82), or to look at metabolic activity in
a range of cell types (83–85). In contrast, detecting dynamic
protein secretions in vitro—as is required for quantification
of the insulin secretion of pancreatic islets—poses a unique
challenge. Traditional methods for measuring protein se-
cretion involve taking snapshots of protein and expression
levels, such as with Western blotting or ELISA, for example.
These techniques coordinate selective targeting of a protein
of interest using antibodies and some form of visualization
of the presence of the target-antibody complex for quan-
tification. More modern proteomic and transcriptomic
approaches have greatly expanded the complement of pro-
teins or transcripts that can be assessed simultaneously to
hundreds or thousands (86–89) but still cannot provide
quick measurements of protein levels. In all these cases,
quantification of protein levels secreted by the cells relies on
removal of the medium surrounding the cells at discrete
time points for subsequent analysis. A detailed temporal
portrait of hormone secretions such as those required for
pancreatic islets is thus limited by the sampling method
used, as well as the inability to make quick, in situ
measurements.

Figure 2—Current quality control process used for islet transplantation. After isolation and purification of islets from donor pancreas, criteria
for determining potency prior to transplantation into a recipient (i.e., “Pre-Transplant Potency Test”) typically include testing for viability
(.70%), purity (.30%), and islet dose (.5,000 IEQ/kg). While testing of the secretion of insulin in response to glucose stimulation—
measured as a ratio of insulin produced in a condition of high glucose divided by insulin produced in a condition of low glucose (target of
stimulation index .1)—is sometimes also conducted, the results are not available quickly enough to be used in decision-making regarding
transplantation (i.e., “Post-Transplant Potency Test”). IEQ, Islet Equivalent; kg, kilogram.
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Microfluidics has become a burgeoning technology in
recent decades that promises to overcome limitations posed
by static culture. Microfluidic devices can mimic blood flow
in delivering nutrients, oxygen, and stimuli to cells and
removing waste and cellular secretions. In practice, these
devices typically constitute an array of small channels and
chambers (with dimensions typically ,1 mm) microfabri-
cated into polymeric or glass material and uniquely designed
to achieve precise flow rates and reagent concentrations.
Custommedia or buffer solutions can be delivered by a series
of supporting equipment such as pumps, tubing, and con-
nectors, although several options exist for pumpless flow
as well (90). Between the design of the device itself
and associated instrumentation, a microfluidic device can
provide a continuous and automated method for assaying
biological activity with high spatial and temporal control.
Dynamic delivery of chemical stimuli is an important fea-
ture of microfluidic devices, as best exemplified by studies
such as those that have looked at entraining islet secretion
(91–93). In addition to the advantages related to perfusion,
microfluidics can also provide an inherent method of sam-
pling secretions from cells, with secretions being continu-
ously swept downstream in the fluid flow. A comprehensive
list of microfluidic systems that have been reported for
assessing islet function can be found in Table 1.

While there have been numerous examples of micro-
fluidic systems created for study of islet function to date,
not all would be equally suitable for screening islet po-
tency prior to transplantation. In the design of micro-
fluidic devices for assaying islet potency, desired features
include the ability to continuously measure a metric of islet
function from a group of islets for batch analysis (94–106),
positioning of islets within the device with minimal man-
ual handling (94,97,98,100–114), the ability to stimulate
the islets dynamically and homogeneously (94–96,115),
and the use of materials and equipment that are easily
scalable (94,99). Because much islet research with use of
microfluidics to date has focused on elucidating basic
principles of islet physiology, several devices are config-
ured for measuring the activity of groups of islets,10—or
even individual islets—which is likely too small for batch
processing of islets for functional potency. Typically, sam-
ples of 15–100 islets are assayed for conventional GSIS
(8,25,26), although the actual number needed to ade-
quately account for the diversity of islets within an islet
preparation is still under debate (116). Inherent to the
integration of a continuous measurement of islet function
is establishing an appropriate balance of islet number and
flow rate to ensure that the signal level matches the limit
and range of detection for the measurement technique in
use. For devices that can screen function from a larger
group of islets, many routinely require manual selection
and loading of islets, which can drastically increase the
protocol time for islet potency testing at scale. Further-
more, a number of devices are designed with a well or
chamber intended for holding a large number of islets—
akin to the wells found in static culture—but this

arrangement does not typically ensure homogeneous or
synchronized stimulation of islets due to their random
positioning within the device. This configuration may
instead lead to unintended variability in results, as islets
may experience heterogeneous and uncontrolled local
concentrations of oxygen, glucose, or other chemical cues.
Thus, a device that can automatically position a sufficient
number of islets for batch testing such that they receive
parallel flow is preferred. In terms of construction, many
devices are made from polydimethylsiloxane (PDMS) and/
or glass, which are typically not amenable for scalable
manufacturing. Thermoplastic devices are more suitable to
fabrication at scale, but they can suffer from issues relating to
feature size and disruptions to optical signals.

With regard to determining islet potency, several devices
have incorporatedmethods tomeasuremetrics of islet health
or function aside from insulin secretion testing, such as
intracellular calcium (95,96,100–107,109,114,117), mito-
chondrial membrane potential (100–107,109), NADPH
(96,106,114), or viability/hypoxia (94,105,107). The use of
multimodal approaches to screen different facets of islet
function may prove to be important in providing a more
detailed understanding the complex state of islets prior to
transplantation (57). Unfortunately, considering the neces-
sity of measuring dynamic insulin secretion, many devices
are fundamentally limited due to their reliance on ELISA to
conduct off-line insulinmeasurements (97,98,100–104,107–
109,114,117–120). These systems therefore suffer from the
same time and effort disadvantages experienced with tradi-
tional GSIS, practically translating into the stimulation and
the protein quantification steps occurring on separate days. A
continuous sensor integrated downstream of islets is re-
quired to overcome the time delay in obtaining relevant
secretion data prior to transplantation.

In recognition of the particular need for a continuous
insulin sensor, several technologies have been developed in
recent years. Some use synthetic strands of RNA or DNA,
known as “aptamers,” to bind to the insulin. These
approaches often use an electrochemical (121–128) or
surface plasmon resonance (129,130) sensing principle,
wherein insulin-targeting aptamers conjugated to various
active elements are adhered to a metal surface and can
alter the electromagnetic properties of the system as a re-
sult of aptamer conformation change during insulin bind-
ing (131). In some cases, the aptamers adhered to a surface
do not release their target compounds once bound, which
necessitates cycles of wash steps to regenerate the sensors
for repeated measurements (122,132,133). Promising
work has also been done without wash steps for
drug compounds (128,134,135) and some proteins
(138–140), though it has not yet been demonstrated
for hormone secretion detection from living human
islets with temporal sampling high enough for dynamic
GSIS. Progress is nonetheless being made to continue
improving the aptamer technology for sensing insulin
(121–124,129,131)—as well as other proteins more
broadly (125,126).
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Another option for sensing is to instead introduce
a continuously flowing source of binding molecules that
mix with the secretions and possibly other reagents to allow
for optical signal detection. Such methods afford the pos-
sibility of using a broader range of antibodies and binding
molecules, as they do not need to balance binding and
release kinetics in order to allow for continuous sensing.
One example is an electrophoretic sampling immunoassay,
where antibodies against insulin and other hormones have
been mixed with the cellular secretions and with fluores-
cently labeled versions of those molecules, and the mixture
is then subjected to an electric field that separates the
molecules based on size (92,93,95,96,115,141–146). While
incredibly precise temporal measurements can bemadewith
this technique, electrophoretic sampling has the unfortu-
nate downside of requiring sophisticated equipment and
a special balance of salt concentrations to ensure proper
molecular migration and thus may not be suitable for large-
scale application. Another option for insulin detection is an
antibody-based assay known as “homogeneous fluores-
cence” or FRET-PINCER, where two antibodies against in-
sulin are each conjugated with a DNA strand attached to
a fluorophore and undergo fluorescence resonance energy
transfer (FRET) when binding to a common insulin mole-
cule (147). The homogeneous fluorescence assay has been
modified for use in a microfluidic system that relies on
formation of water in oil emulsion droplets created down-
stream of islets (148–150). Each droplet represents a dis-
tinct time point in the dynamic secretion and prevents
loss of temporal resolution as the assay reagents mix and

fluoresce. Although the technology is equally impressive for
its time precision (150), it also requires elaborateflow control
for droplet formation that may be prohibitive for multi-
plexing. Another recently introduced microfluidic method
that borrows from a variant of antibody-based detection uses
the principle of fluorescence anisotropy (94,151). Inciden-
tally, this technique uses the same reagents as electro-
phoretic detection but relies on changes in polarization of
fluorescent light in response to average molecular rotation
of the mixture (152). Using this sensing technique, we
have produced continuous insulin secretion data that
mimicked the dynamic response found with the more
conventional, two-step dynamic GSIS for the same batch
of human islets (94). Since antibody binding decreases
rotation rate in proportion to the size of the target analyte,
the main limitation of this technique is the requirement
that the analyte (e.g., insulin is ;6 kDa) be sufficiently
smaller than the antibody (;150 kDa). In addition, fluo-
rescence anisotropy is also influenced by buffer composi-
tion. For example, measurable differences in baseline
readings have been observed in low (2.8 mmol/L) versus
high (20 mmol/L) glucose concentrations, requiring back-
ground subtraction for islet potency testing (94). Using
fluorescence anisotropy, work has also been done to show
the possible detection of other hormones aside from in-
sulin, such as glucagon, opening up the possibility of
measuring the secretions of multiple hormones (153,154).

Integrated insulin sensors offer a powerful method for
probing islet cell function. The recent development of
several microfluidic devices that couple dynamic stimulation

Figure 3—Expression of ECMandmatrix adhesion proteins in pancreatic islets.A–C: Heatmaps of proteomics data for ECM (panelA), matrix
attachment (panel B), and reference (panel C) proteins from isolated human islets (199) (first column) in comparison with transcriptomic data
from either isolated human islets (200) (second column) or flow-sorted a-cells (third column) or b-cells (fourth column) (201). Each data set
was percentile normalized prior to selection and plotting of the protein subsets. INS, insulin; GCG, glucagon; SST, somatostatin; HK1,
hexokinase; SLC2A1, GLUT protein type 1.
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with continuous insulin secretion measurements is in line
with the needs of potency testing, which currently lacks an
efficient means to test the functional capacity of the tissue to
produce hormones. Efforts are necessary to adapt the existing
technologies for quality screening demands that may include
the ability to assess more islets or for running multiplexed or
multiparametric assays to add to the predictive value. Re-
gardless, a system that can combine automated islet loading,
homogeneous and dynamic stimulation, and, most impor-
tantly, continuous insulin detection will be the key to offering
a fast potency test for islet transplantation.

Integration of Microenvironmental Cues
Beyond dynamic stimulation and integrated insulin sensing,
the addition of cues from the native islet microenvironment
would increase the relevance of potency tests to islet trans-
plantation. As with myriad other tissues (155–164), the

microenvironment of human islet cells dictates their bi-
ological function (165–170). For example, interactions be-
tween the insulin-producing b-cells and the endothelial cells
of the adjoining vasculature have been shown to be partic-
ularly important for mediating b-cell activity including
insulin secretion (31). Human islets also have a unique
double-layer basement membrane, a specialized form of
ECM typically found between a tissue and adjacent endo-
thelial cells (165) that constitutes the local microenviron-
ment experienced by b-cells (Fig. 1B). Experiments that
have aimed to quantify the composition of ECM proteins in
islets have revealed an abundance of structural proteins like
collagens (e.g., ColVI, ColIV, ColI) and laminins (e.g., 511,
521), as well as a variety of matricellular proteins including
osteopontin (SPP1), agrin, biglycan, osteonectin (SPARC),
and tenascin C (171–173). Existing data on islet matrix
proteins are almost certainly incomplete, since islets

Figure 4—Proposed paradigm for future islet transplantation. Next-generation islet transplantation can depend on either cadaveric donor
islets or the use of stem cell–derived insulin-producing cells (SC-b cells), which should increase the supply of tissue. For supplementation of
existing standards (solid black box) and allowing for b-cell-specific functional assessment, a new potency test (dotted black box) should be
automated, be made of scalable materials, rely on coupled dynamic stimulation to and continuous insulin measurements from islets
positioned in parallel, be able tomeasure a peak in response to glucose stimulation in,1 hr, and providemicroenvironmental cues thatmimic
the islet conditions in vivo. Inset depicts an example of such a test that utilizes a microfluidic device designed with features that meet these
criteria. hr, hour; iPS, induced pluripotent stem.
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compose only 2% of the pancreas by mass and are typically
isolated with a blend of collagenases and additional matrix-
degrading enzymes (174,175). While enzymes used during
islet isolation degrade matrix proteins, transcripts from ECM
genes remain intact and can help paint a more complete
picture. Our own comparison of published transcript and
protein expression data from isolatedwhole islets and purified
islet cells suggests that b-cells rely on neighboring mesen-
chymal cells to provide most of the matrix proteins found in
the basement membrane layer (170) (Fig. 3A), although
b-cells do transcribe multiple ECM genes (e.g., laminin
511 and SPP1) and likely contribute to matrix elaboration.

When in contact with ECM, specialized proteins on the
surface of cells such as integrins, syndecans, and discoidin
domain receptors bind to the ECM and help to transmit
information about the forces of cellular attachment—
including responses to substrate stiffness—in a process
known as mechanotransduction (176,177). As for matrix
proteins, we similarly compared matrix attachment gene
expression in islet cells (Fig. 3B). Reference proteins, such
as the highly expressed islet hormones (insulin, glucagon,
somatostatin), hexokinase, and the GLUT protein type 1,
as well as ubiquitous housekeeping proteins (PGK1,
ATP5F1, HPRT1), were also plotted (Fig. 3C). This analysis
suggested that the most abundant integrin complex in islet
endocrine cells is integrin a3/b1, a laminin receptor (178).
The importance of laminin interactions is demonstrated by
contributions to cell fate decisions during pancreatic de-
velopment. While laminin engagement induces endocrine
differentiation, pancreatic progenitors that attach to fi-
bronectin via integrin a5/b1 complexes induce YAP1
transcriptional programs and form ductal tissue (179).
Accordingly, blocking integrin attachment to laminin in
developing islets decreases endocrine cell differentiation
and survival (173,180). While different variants of integrin
are expressed in different relative amounts for human and
rodent islets (171), integrins in mice have been implicated
in playing an important mechanistic role in initiating
(181,182) and directionally polarizing (183) insulin secre-
tion. Thus, the islet microenvironment provides necessary
regulation of insulin secretion to help maintain glucose
homeostasis.

It is therefore important to assess islet function in
a context that mimics the signals that would normally
be present from neighboring biological structures
(165,170). However, establishing a proper microenviron-
ment for in vitro systems is particularly challenging with
regard to the surfaces that contact cells. Materials used to
house cells in culture are typically from nonbiological
sources. To address this dilemma, one may functionalize
a given abiotic surface with ECM proteins that the b-cells
experience in vivo (170). Matching the mechanical stiff-
ness of the body presents an additional concern. While the
healthy whole human pancreas has an elastic modulus of
1–3 kPa (184,185), andmeasurements of individual mouse
islets have modulus values ranging from 100 Pa to 10 kPa
(186), the stiffness of materials used for in vitro systems is

typically on the order of 1 MPa and even as high as 1 GPa.
As diabetes progresses, the exocrine pancreas and capil-
laries adjacent to islets stiffen (187–189), and it has been
suggested that microvascular stiffening contributes to
alterations in islet function (189). It is thus reasonable
to suggest that the stiffer materials commonly used for
culturing islet cells may provide pathological signals. The
use of unmodified, nonbiological materials for culturing
cells thus poses a significant chance of altering cell behav-
ior. Indeed, the lack of physiological ECM and mechanical
forces in traditional in vitro culture may partially explain
why GSIS results do not correlate with transplantation
outcome. This problem is compounded by the removal of
native microenvironment during the isolation of donor
islets, or the absence of these cues in the generation of
stem cell therapies.

Improving the relevance of quality control testing for
cell products—and perhaps the function of the cell prod-
ucts for their intended purpose—requires addition of cues
that will allow for a cell product to experience conditions
closer in form and function to those of native islets.
Microencapsulation technologies and specialized contain-
ment devices have been developed primarily to address the
immune attack of islet grafts (16–19,190–193), although
these also serve a dual purpose in protecting cadaveric
islets encased within from the stiff materials that would
likely be used for in vitro functional testing. Such encap-
sulation strategies can also be tuned to provide appropri-
ate ECM and contact forces for cells at the outermost layer
of islets. In recognition of the important interplay of islets
with the vasculature, microfluidic devices have also started
to incorporate physiologically relevant conditions, such as
utilizing endothelial cells and controlling shear forces
(94,113,194,195). Combining these advances with glucose
stimulation and insulin sensing will likely produce potency
tests with more physiologically accurate responses, though
it is also necessary to ensure that the contextual cues of
endothelial cells in particular can be applied in a short
enough window prior to transplantation. Other specific
conditions islets experience during transplantation could
also be mimicked in a potency test. For instance, it is
estimated that .60% of an islet graft is destroyed by
immune processes within hours of infusion, suggesting
that there is a need for predicting how islets can avoid an
immune response (6). Human islets embedded in a matrix
derived from decellularized human pancreata elicit a re-
duced immune response in a humanized mouse model
(196), and the same type of evaluation could be conducted
in a microfluidic device, wherein immune cells would be
added to simulate an inflammatory response or an im-
mune rejection. With consideration of the posttransplan-
tation environment, isolated islets or differentiated stem
cell products could be prepared and analyzed prior to
transplantation to elicit more accurate predictions of their
functional potential. Accordingly, different transplanta-
tion sites (197) such as the portal vein or omental adipose
tissue could be recapitulated to identify the best site for
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a given batch. By assessing islet functionwithin a biomimetic
microenvironment over time, the potency test may also help
predict graft remodeling posttransplant or even improve
the quality of batches that would otherwise fail quality
control or fail to provide therapeutic benefit to patients.
Our vision for an ideal potency test is depicted in Fig. 4.
Such a potency test would automatically assess the islet
secretion response to dynamic stimulation in a coupled
system and would be poised to evaluate the increasing
supply cell products from cadaveric or stem cell sources.
The development of a system that recapitulates the native
microenvironment of islets while sensing their secretory
function is imperative for establishing an effective potency
test.

Conclusions
Reliable potency testing for use in islet transplantation
clinical practice guidelines is stalled by the absence of rapid
methods for sensing b-cell function. Because b-cells di-
rectly sample glucose concentration in the blood and re-
spond by secreting insulin, a core identity of the b-cell is
the dynamic coupling of glucose and insulin secretion.
Integrated systems that deliver dynamic glucose stimula-
tion and measure resultant insulin secretion continuously
will lead to a more useful assessment of pretransplant islet
screening. Given the importance of other secretagogues
and physiological cues in inducing postprandial insulin
secretion (198), it may also be useful to investigate other
stimuli for insulin secretion. Also, since capillaries pass
through pancreatic islets to allow for insulin to enter the
bloodstream, the microenvironment that characterizes the
interface between b-cells and capillaries should serve as
a key inspiration. Adjusting ECM and stiffness can help
donor islets recover within an environment similar to that
from which they were extracted and can also improve stem
cell–derived products by constructing developmental sig-
nals that they normally lack. Future potency tests for
pancreatic islets will therefore rely on both continuous
insulin measurements and replication of the microenvi-
ronmental cues that mimic in vivo conditions. Biomimetic
potency tests that efficiently sense dynamic b-cell secre-
tory function can dovetail with the increased availability of
human islets and stem cell replacements to broaden access
to a life-changing treatment for individuals with diabetes
and help guarantee successful clinical outcomes.
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