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The hierarchical structure-dependent function of self-assembling proteins regulates the biochemical and mechanical func-
tions of cells, tissues, and organs. These multi-scale properties make proteins desirable candidates for novel supramolec-
ular materials that require tailored properties and customizable functions. The ability to translate molecular domains of
proteins into the bulk production of conformable materials, such as textiles, is restricted by the current limitations in
fabrication technologies and the finite abundance of protein starting material. We will review the common features of
self-assembling proteins, including their structure-dependent mechanical properties and how these characteristics have
inspired techniques for manufacturing protein-based textiles. These technologies coupled with recent advances in recom-
binant protein synthesis enable the bulk production of fibers and fabrics that emulate the hierarchical function of natural
protein networks.
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INTRODUCTION
In mammals, protein networks assemble to regulate the
form and function of cells and tissues while maintaining
the structural stability of coupled organ systems.1–3 Cells
secrete and assemble proteins and, either alone or in coor-
dination with other cells, build nanoscale fibrous structures
and networks with chemical and mechanical anisotropy.4�5

Many other organisms manufacture and utilize protein net-
works as ex vivo tools, for defense, transportation, to cap-
ture prey, and to protect offspring.6–8 Understanding the
underlying design principles of how proteins assemble
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themselves into hierarchical fibrous structures can provide
researchers with new insights into designing, building, and
testing protein-based textiles. These synthetic systems can
be a desirable tool for a variety of applications in medicine
and industry.

Protein textiles are envisioned as a system of multi-
ple mechanosensitive protein domains, which are strung
together into macromolecular assemblies of fibers by
a fabrication process that does not compromise their
mechanical properties. Biomanufacturing of protein net-
works is accomplished by cells or specialized organs in
animals and insects.2�5�7�9–12 For example, silkworms or
spiders produce silk fibers for cocoons or webs through a
step-wise process mediated by an interplay between shear
forces, pH, and ionic strength beginning in their major
ampullate gland.6�8�12�13 Silk fibers can then be manu-
ally isolated from cocoons, where raw silk fibers are then
reeled, twisted, or doubled to make a thread.7�14 In addition
to their ability to withstand robust manufacturing condi-
tions, protein textiles offer several advantages over con-
ventional polymer textiles composed of nylon, polyesters,
or vinylon, such as high extensibilities without failure, bio-
compatibility, and tunable stiffness.7�9�15�16 The structure-
dependent functional properties of protein-based textiles
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make them a desirable material for a variety of applica-
tions that require programmable chemical and mechanical
features, such as elasticity, hydrophobicity, and conforma-
bility, for clothing, wound dressings, surgical sutures, body
armor, and filters.

Recently, recombinant protein technologies have been
optimized to manufacture proteins independent of the
natural organism.17–19 Synthesized proteins can be pro-
cessed using traditional manufacturing techniques, such as
wet spinning or electrospinning, to produce protein based
fibers for medical applications, such as vascular grafts or
tissue engineered scaffolds.20–22 In this review, we will
examine the design rules mediating protein self-assembly
on the molecular level, the current technologies available
to build protein-based textiles, and the tools available to
test these properties across multiple spatial scales.

DESIGNING PROTEIN TEXTILES
The spatial scales of a protein textile, spanning from
approximately the nanometer to centimeter length scales,
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is depicted in Figure 1. A feature of proteins is their
hierarchical arrangement, beginning with the coordinated
assembly of single amino acids to form peptides of the pri-
mary protein structure.2�23 This primary structure contains
some combination of the twenty amino acids and their
post-translational counterparts that are assembled through
non-covalent hydrogen bonding.7 This ensemble of pep-
tides is further stabilized by structural folding that yields
a defined secondary structure, which is also held together
by non-covalent hydrogen bonds. There are three com-
mon secondary structure motifs that impact protein stabil-
ity: �-helix, �-sheet, and random coil (Fig. 1).7�23 Both
�-helices and �-sheets are stabilized by hydrogen bonding
or hydrophobic core interactions that lock their structures
into place. Random coils, on the other hand, are not sta-
bilized by hydrogen bonding and exhibit an irregular sec-
ondary structure, which decreases the stability and overall
stiffness of random coil proteins.7 The secondary structure
also influences final protein conformation (tertiary struc-
ture) and their arrangement (quaternary structure) in the
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Figure 1. Spatial scaling of protein networks. The structure-
dependent functional properties of protein networks begin
with the assembly of amino acids that form the primary struc-
ture that regulate the coordinated assembly of protein fibers
to form networks.

microenvironment of biological tissues.7�24 Protein fibers
are polymerized through non-covalent bonding at the pro-
tein’s N -termini, where supramolecular networks aggre-
gate via electrostatic bonds to form the extracellular matrix
(Fig. 1).5�25 This system of secondary, tertiary, and qua-
ternary folding across multiple spatial scales ensures that
mechanical proteins remain stable and their assembly into
a centimeter-scale network of fibers does not lose its
mechanical integrity in extracellular space.

Collagen, Fibronectin (FN), and silk are three proteins
that assemble under different conditions but possess a

mechanically stable secondary structure that contributes
to their biological function. Collagen, which is the most
abundant extracellular matrix (ECM) protein in animals,
functions to maintain strength and elasticity of tissues,
blood vessels, ligaments, and bone.25�26 It is a lin-
ear polypeptide containing a repetitive primary struc-
ture comprised of (GXY)n repeats, where X and Y

can be any amino acid including Glycine (G), Pro-
line (P), or hydroxyproline.25 This repetitive structure
influences intramolecular folding and the assembly of three
coiled �-helices twisted to form a super helix quater-
nary structure.16 In its super helix conformation, colla-
gen assembles into fibrils through non-covalent bonding
at their N -terminus, resulting in a fibrillar elastic mod-
ulus ranging from 0.6 (hydrated) to 3.2 (dry) GPa with
maximum strain before failure of ∼30%.26�27 These fib-
rils assemble into supramolecular complexes, where the
final diameter is regulated by the function of the spe-
cific tissue or organ.25�26 For example, collagen fibrils
with diameters of 20 nm are arranged orthogonally in
the cornea to maintain its structure while retaining optical
transparency. Larger-diameter (500 nm) fibrils align in par-
allel bundles to support the high tensile demands of mature
tendons.25–27 Thus, the repetitive primary structure of col-
lagen, its coordinated self-assembly, and the demands from
its local microenvironment give rise to its ultimate biolog-
ical function.

Another ECM protein, FN is structurally and function-
ally different from collagen, but it utilizes similar design
principles to form fibrils in vivo. FN is a multidomain
glycoprotein (450 kDa), whose primary structure contains
three (I, II, or III) repeating �-sheet structures.4�5�10 FN
I and II domains contain interchain disulfide bonds that
do not unfold. The FN III domain does not contain disul-
fide bonds, which enables FN to be manipulated by cells
without breaking.28 FN exists in two quaternary conforma-
tions: a native, globular conformation, which occurs in the
absence of external tension, and an extended conformation
that is unfolded FN.4�28�29 In this extended conformation,
FN recruits other globular molecules from extracellular
space, initiating polymerization via non-covalent bonding
at its N -terminus.4�29 Fibrillar FN is not static once it is
coupled to cells; it can be rearranged, remodeled, and recy-
cled to meet the demands of its local microenvironment.29

Thus, a key feature of FN assembly into fibers is its ability
to undergo reversible conformational changes that convert
soluble FN from its initial inactivated, compact conforma-
tion to a surface-activated, extended conformation. These
features endow FN with its natural elasticity and extensi-
bilities approaching 700% without failure and elastic mod-
uli between 2–5 MPa.30�31

Silk is another common protein that exhibits structure-
dependent functional properties similar to collagen and FN
but is not a protein found in mammals.16�24�32 Silk fibroin
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is native to spiders and silkworms, and contains alter-
nating repetitive, hydrophobic core domains, rich in Ala-
nine (A) and Glycine (G), and a non-repetitive, hydrophilic
C-terminal domain.8�15�33 During fibrillogenesis, fibroin
monomers assemble into �-sheet crystallites that are sta-
bilized by intramolecular hydrogen bonds. This core struc-
ture of crystallites contributes to silk’s stiffness (5–7 GPa)
and their extensibilities near 30%.13�34 Like collagen, the
high percentage of Glycine in silk enables a tightly packed
secondary structure. However, the alternating repetitive
and non-repetitive primary structure of silk fibroin enables
the protein to fold into a highly stable �-sheet secondary
structure.16�24�32 Regardless of their final conformation,
collagen, FN, and silk all possess repetitive sequences and
domains stabilized by non-covalent bonds that contribute
to the bulk mechanical properties of their formed fibers.
These properties enable proteins to assemble into fibers
endowed with a function dependent on ordered arrange-
ments of their amino acids.

Why are these proteins noteworthy and the discussion
of their properties timely? While we have manufactured
with silk for decades, before protein fibers composed of
proteins such as collagen or FN can be used in the textile
industry, two technical challenges must be addressed: (1)
protecting protein structure and function during the mass
production of textiles, and (2) overcoming the limited nat-
ural abundance of the proteins themselves.

BUILDING PROTEIN TEXTILES
Commonly used fiber-forming manufacturing processes
include melt,35�36 dry,37�38 wet,39�40 or electro41�42 spin-
ning. These techniques involve solution extrusion under
high pressures to form fibers and require a series of post-
processing steps that include cooling gases (for melt and
dry spinning) or precipitation (for wet spinning) to solid-
ify formed fibers.9 Once the fibers are formed, they are
collected, stretched, and aligned using spindles and reels.
Electrospinning is a fabrication technique similar to con-
ventional extrusion spinning, except that it utilizes an
electric field (5–20 kV) instead of tensile force to initi-
ate polymer jet formation.9�41–43 Electrospun fibers form
due to a potential difference between a charged starting
solution and a grounded collector, where fibers solidify
by evaporation. Despite its versatility to form polymer
fibers, electrospinning is restricted by a low production
rate (0.5 g h−1 per spinneret) and poor control over fiber
diameter and orientation.9 It is also dependent on sol-
vent conductivity to direct the polymer jet to the collector
substrate.9�41�42�44�45 These extensive post-processing tech-
niques require that the starting material be robust enough
to withstand these steps without denaturing, which is why
most of these techniques are optimized to spin polymers,
not proteins.

We argue that protein-based fibers will offer a wider
range of functionalities, such as high extensibilities,

biocompatibility, and tunable stiffness that are currently
not available with polymer fibers. To spin proteins without
denaturing their native structure or function, a process-
ing technology must be developed to mimic the pro-
tein’s natural state (i.e., aqueous environments and ambi-
ent temperatures). A biological model for protein fiber
fabrication is spider silk fibrillogenesis (Fig. 2(A)). This
process is mediated by the interplay between ionic charges,
pH, and mechanical strain to produce silk microfibers
with experimentally measured diameters of 19�7±2�8 �m
(N = 200 fibers Fig. 2(A) ii) from Bombyx mori cocoons
Fig. 2(A) iii). During fibrillogenesis, soluble silk fibroin
enters the spinning gland (ampulla) in an �-helix confor-
mation until it reaches the spinning duct (Fig. 2(B)). Shear
forces in the duct, along with a pH drop to 6.3, alter-
ations in ionic strength of the solution, and reduction of
solution volume—all alter the hydration pattern of fibroin,
which triggers its conformational change from �-helix
to �-sheet.12�13 These �-sheet domains are stabilized by
non-covalent interactions, which are assembled into fibers
drawn from the spigot by the spider’s hind legs, producing
the silk web.8�13�46 Thus, the interplay between conforma-
tional changes, elongational flow, and shear stress yields
the efficient production of mechanically stable, insoluble
silk fibers.

We have developed two new forms of protein textile
production that utilize either shear flow or conformational
changes.44�47 They offer appealing features, such as room-
temperature processing, rapid prototyping, and high pro-
duction rates without direct loss of protein function. The
rotary jet spinning (RJS) technique was developed to man-
ufacture polymer fibers using shear stress and elongational
flow due to centrifugal forces in a mechanism that mim-
ics how spiders extrude silk (Fig. 2(C) i).44�48 The basic
configuration of the RJS includes a reservoir containing a
solution that is attached to a high-speed motor capable of
rotational speeds between 0–75,000 RPM. As the reser-
voir rotates, the polymer solution is extruded through a
∼400 �m orifice, and subsequent fibers are collected at
a fixed distance away from the reservoir.44 We hypoth-
esize that these rotational speeds can be used to mimic
the shear fluid flow in the spider duct to form insolu-
ble silk fibers. To demonstrate the capabilities of the RJS
to induce protein fibrillogenesis, silk fibroin protein was
extracted from B. mori cocoons according to a previ-
ously published protocol49 and solubilized in hexafluoro-
2-propanol (3 wt%). In its soluble form, silk fibroin has
an �-helical conformation. Once extruded under the shear
forces of the RJS, fibroin assembles into insoluble nano-
fibers (450±87 nm diameter, N = 200, Fig. 2(C) ii). The
secondary structure of native and RJS spun silk was mea-
sured using attenuated total reflectance-Fourier transform
infrared spectroscopy (ATR-FTIR, Fig. 2(C) iii). Native
B. mori silk fibers (blue) exhibit characteristic absorption
peaks at 1516 and 1624 cm−1, representative of a �-sheet
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Figure 2. Spider silk fibrillogenesis as a model for fiber fabrication. (A) Spiders synthesize silk fibers through solution extrusion,
providing a biological model for fibrillogenesis (i). (ii) Scanning electron micrograph (SEM) of as formed silk fibroin fibers (scale
bar, 40 �m) from Bombyx mori silkworm cocoons (iii). (iv) Soluble silk fibroin proteins extracted from cocoons. (B) Schematic of
the functional anatomy of the silk gland and spinning duct. The ampulla is the storage sac of the silk gland. The funnel orients
the protein while it enters the duct. The proximal and medial limbs of the duct function to remove water, reducing total volume
during fibrillogenesis. The valve is the pump that begins the spinning process. (C) Rotary jet spinning (RJS) as a bio-inspired
model of spider silk fibrillogenesis. (i) A schematic of the RJS device, where � is the angular speed. (ii) SEM of silk fibers as
produced by the RJS (scale bar, 2 �m). Silk fibroin is dissolved in 3 wt% hexafluoro-2-propanol, and fibers are spun at 75,000 rpm.
(iii) ATR-FTIR spectra of B. mori silk (blue) and RJS silk spun at 20,000 RPM (black). (D) Schematic of fibers formed using the
RJS reservoir. (i) Side view of jet initiation. (ii–iii) top view of jet elongation and solvent evaporation to form fibers.

rich conformation.49 RJS produced nanofibers (black) sim-
ilarly exhibit peaks at 1527 and 1635 cm−1, suggesting
that these shear forces are large enough to induce fibril-
logenesis. Collectively, these data indicate that shear fluid
flow of RJS successfully mimics spider silk fibrillogenesis.

To better understand the mechanism of fibrillogenesis
using the RJS, we developed an empirical model, where
we identified three stages of fiber formation using the RJS:
(1) jet initiation, which is dependent on reaching a defined
threshold angular speed (�, Fig. 2(D) i),
(2) jet extension, which is characterized as the balance of
centrifugal and viscous forces shearing molecules within
the jet (Fig. 2(D) ii), and
(3) solvent evaporation, which is dependent on diffusion
of the solvent from the polymer (Fig. 2(D) iii).44�48

Previous work has demonstrated that solution viscosity and
rotational speed of the reservoir are the dominant param-
eters controlling fiber diameter.48 By tuning these param-
eters, highly aligned fibers with diameters ranging from
200 to 2000 nm can be formed under room temperature,
aqueous conditions.

On a smaller size scale, protein nanoFabrics have
been manufactured utilizing a surface-initiated assembly
technique to induce conformational changes during fib-
rillogenesis (Fig. 3).30�47 NanoFabrics are formed using
micro-contact printing, a soft lithography technique
used to deposit proteins in variety of defined patterns
(Fig. 3(A)). The process utilizes a high-density protein
adsorption onto a hydrophobic stamp, followed by a

transfer of the protein from the stamp to a temperature-
sensitive substrate composed of a thin sacrificial polymer
layer (Fig. 3(B)). In the presence of a low temperature
(<32 �C) aqueous solution, the sacrificial layer under-
goes a phase transition from a solid to a liquid, releas-
ing the fabrics from the substrate as free-standing fibrillar
arrays (Fig. 3(C)). This surface-initiated assembly trig-
gers conformational changes in the proteins, which can
then be used to expose unique mechanical properties. For
instance, fabrics composed of FN have been shown to
extend over 8× their original length without breaking via
domain unfolding, illustrating that protein based textiles
offer robust mechanical properties compared to current
polymer textiles. This capability to engineer free-standing
protein nanoFabrics with tunable composition, architec-
ture, mechanical properties, and biological activity is an
important proof-of-concept design tool for protein-based
textiles.

The supply of natural proteins remains a major limita-
tion in the manufacture of protein nanofibers. Currently,
protein fibers are used “as harvested” directly from the
source: wool from goats or sheep, silk from silkworm
cocoons, and collagen from mouse or rat tails. In this state,
proteins cannot be modified or altered, limiting their pos-
sible applications. To circumvent the limitations in har-
vested proteins, recombinant synthesis technologies have
been optimized to not only enable protein production
independent of the natural organism but also to provide
the flexibility to design proteins de novo with strategi-
cally placed domains that will provide a specific function,
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Figure 3. Surface initiated assembly of FN nanoFabrics. (A) FN fibers are patterned using micro-contact printing. (i) This process
utilizes a PDMS stamp engraved with micro-scale features inked with a protein (FN) of interest (ii). (iii) The features of the
stamp are coated with a thin layer of protein and transferred to a thermosensitive PIPAAm coated glass substrate (iv). (v–vi) The
resultant pattern is used to form nanoFabrics. (B) FN nanoFabrics are fibrillar arrays formed after they are released from the
PIPAAm substrate. (i) This process takes advantage of conformational changes in FN. In the presence of low temperature aqueous
solutions, PIPAAm changes its phase, to release the micro-patterned FN (ii) as fibers (iii). Scale bar is 100 �m. Reprinted with
permission from [30]. L. F. Deravi et al., Differential contributions of conformation extension and domain unfolding to properties
of fibronectin nanotextiles. Nano Lett. 12, 5587 (2012), © 2012 American Chemical Society. (C) This process is amenable to a
number of different patterns and proteins (i). Red is laminin lines and green is fibrinogen. (ii) SEM image representing a three-
dimensional FN nanoFabric whose X and Y axes are 360 �m. Reprinted with permission from [47]. A. W. Feinberg and K. K.
Parker, Surface-initiated assembly of protein nanofabrics. Nano Lett. 10, 2184 (2010), © 2010 American Chemical Society.

such as elasticity, biocompatibility, or rigidity.17–19 Recom-
binant synthesis strategies utilize cells as machines to
manufacture peptide sequences configured using computa-
tional modeling.18 The sequences can either directly mimic

specific proteins or include selective domains within a
protein.19 The configured sequence is used to construct
a synthetic gene encoding polypeptide, which is inserted
into a genetic vector and transferred to a host system.
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The host will then express the encoded polypeptide, and
the polypeptide will be collected, purified, and character-
ized for further use.

Bacteria, such as Escherichia coli, are most com-
mon for recombinant expression of proteins, but these
prokaryotic systems often fail to express specific fold-
ing patterns in complex, multi-modular proteins. Eukary-
otic systems, such as yeast, have been used for transient
expression of larger protein structures.17�19 Even so, yeast
is only effective at expressing proteins that have fewer
than 500 residues. Mammalian expression systems, such
as Chinese hamster ovary (CHO) cells, human embry-
onic kidney (HEK) cells, or PER.C6 derived from human
embryonic retina cells have been optimized to manufacture
larger, extracellular matrix proteins, such as FN or colla-
gen and have recently been optimized to yield milligram-
scale quantities of protein from CHO and HEK cells
and gram-scale quantities from PER.C6 cells.17�50–53 The
advancements in recombinant protein technologies enable
the production of engineered proteins that can be cus-
tomized for a specific function. Higher yields of protein-
based materials may also be realized by combining select
protein domains with synthetic polymers through coupling
reactions.54 These hybrid composites will maintain the
functionality of proteins, while using only a fraction of the
material.

TESTING THE MECHANICAL DURABILITY
OF PROTEIN TEXTILES
One of the novel features of protein fibers is their abil-
ity to bear tensile loads over extraordinary ranges with-
out failing. Protein stability is defined as the unfolding
force at a specific pulling velocity or loading rate, where
larger forces denotes a more stable protein.55 Understand-
ing how protein structure contributes to the bulk mechani-
cal properties of a network requires tools sensitive enough
to measure protein mechanics across multiple spatial scales
(Fig. 4). At the single protein level, experimental tech-
niques, such as atomic force microscopy (AFM), have
been used to measure the mechanical functions of pro-
teins. AFM is a single molecule force technique that is
capable of measuring pN forces generated by proteins
or small molecules at a sub-nanometer spatial resolution
utilizing a piezoelectric cantilever (Fig. 4).55�56 In AFM,
the cantilever attaches to the protein of interest, which is
adsorbed to a static substrate. As the protein is stretched,
it becomes aligned with the applied force, and deflec-
tion at the protein-cantilever interface is used to calculate
force generated during elongation.57–59 The force required
to unfold proteins is dependent on the free-energy bar-
rier (�GT –N 	. Once the initial barrier is crossed, a sin-
gle domain begins to unfold, where the force threshold
required to break all subsequent domains is smaller than
the original.60�61 Proteins �-sheet secondary structures,
such as FN or silk, display a sawtooth force-extension

Figure 4. Spatial scaling of mechanical tools available to
study protein mechanics. The mechanical properties of pro-
teins can be characterized across multiple spatial scales
beginning with experimentally measured force-extension
curves using AFM coupled with SMD simulations at pN forces
to the bulk mechanical properties of a protein network using
uniaxial tensile testing at mN forces.

curve with mean force-peaks of 145–300 pN (Fig. 4),
where individual force peaks correspond to the mechanical
unfolding of specific domains.56�58�60�62

Not only do protein unfolding forces depend the free-
energy barrier (�GT –N 	, the intrinsic transition distance
(�z) between folded and unfolded domains also regulates
peak forces. The interplay between �GT –N and �z in reg-
ulating unfolding forces can be understood using Bell’s
two state model.55�63 The two-state model considers a sys-
tem being pulled over a free-energy barrier separated by
two local minimal energy states and has previously been
used to estimate protein unfolding under load.30�64 In this
model:

nf =
1

1+�0 exp
(
F�z

/
kBT

) (1)
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where
nu = 1−nf (2)

Here, �0 is the unfolding rate at zero force (or 
nu/nf 	 at
zero force). The nf and nu variables are the fractions of
folded and unfolded domains in a protein, respectively, F
is force, kBT is the thermal energy at room temperature
(T 	, and �z is the transition distance between the folded
and unfolded states that may be collected experimentally
through single-molecule force microscopy studies. Smaller
unfolding rates (�0	 and shorter unfolding distances (�z)
produce a larger �GT –N and higher unfolding force. For
example, proteins enriched with �-sheet domains, such
as FN or silk, are considered more stable than collagen
because they require larger forces to overcome the �GT –N

barrier due to the higher density of hydrogen bonds within
their secondary structures.5�65 Thus, �-sheet domains sta-
bilized by hydrogen bonding behave as a force barrier
that resists protein unfolding.66 This differs from the force
required to stretch �-helix, which can unfold successively
under force with no significant force peaks.

Computer simulations, such as steered molecular
dynamics (SMD), are also used with AFM to understand
how individual protein domains respond to mechanical
strain. These simulations are atomistic reconstructions of
protein primary structure designed to mimic experimen-
tally measured single-molecule forces over a shorter time
scale (SMD, ∼1 �s and AFM, ∼1 s).65�66 SMD simula-
tions suggest that larger, local forces (peak ∼1500 pN)
are required to unfold �-sheets due to a higher den-
sity of intramolecular hydrogen bonds when compared
to �-helices (Fig. 4).66 While SMD does provide use-
ful quantitative measurements elucidating the relationship
between mechanical strain and protein secondary structure,
the shorter time scale of simulations often lead to larger
force values compared to experimental values, suggest-
ing that equilibrium is not reached during the time course
of simulations.67 However, the combination of AFM and
SMD together are useful in understanding the structure-
dependent functional relationship of proteins.

Proteins that assemble into fibers or networks of fibers
often require nN-mN forces to initiate elongation, and
these properties can be measured using uniaxial tensile
tests (Fig. 4).30�68 For isolated fibers, these tests may be
performed using finely tipped microneedles made of solid
borosilicate glass rods or a piezoelectric MEMs force
sensor.30�31�68 In these tests, the fiber is strained, and dis-
placement at the microneedle-fiber or MEMs sensor-fiber
interface is used to calculate force generated by the fiber
under load. These techniques have been used to follow
the strain dependent molecular changes in both FN and
collagen protein networks.30�31�69 For a protein network,
measurements can be recorded using an Instron mechani-
cal tester. A standard Instron consists of two grips, which
are used to suspend a fiber network in air or in solution
(Fig. 4). The fiber network is uniaxially loaded, which

allows a direct measurement of elastic stress-strain behav-
ior, young’s modulus (E) and ultimate tensile strength
(UTS). Depending on the protein secondary structure,
fibers will exhibit a range of mechanical properties. Silk
and collagen exhibit similar extensibilities (∼30%), but
silk is significantly stronger than collagen (silk ∼5 GPa,
collagen ∼3 GPa), due to its �-sheet secondary struc-
ture and the larger �GT –N threshold to overcome during
unfolding.13�26�34 On the other hand, FN is the softest of
the three protein fibers (∼5 MPa), even though it is embed-
ded with �-sheets.30�31 Because the FN III domains are not
tightly packed like the �-sheet crystallites in silk, they can
unfold/refold under load, contributing to FN’s impressive
700% extensibility without breaking. From single domains
to networks of fibers, the tools available to analyze the
structure-dependent function of proteins contributes to
defining parameters of molecules whose mechanical prop-
erties can be tuned depending on the arrangement and
degree of structural domains that resist unfolding.

SUMMARY AND OUTLOOK
Our previous studies of protein self-assembly across mul-
tiple spatial scales have revealed two characteristics neces-
sary for designing a mechanically stable protein mimetic:
(1) repetitive primary structure and (2) a structure sta-
bilized by non-covalent bonds. These components of a
stable protein network must be engineered to realize the
functionality of protein-based textiles for biological and
non-biological applications. The span of spatial scales
that require manufacturing control of these properties is
formidable and will benefit from novel theoretical mod-
els of the materials, their scaling laws, manufacturing, and
application. With these programmed characteristics, a new
generation of smart textiles can be designed that will not
only be soft and conformal but also mechanically stable.
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