The Disease Biophysics Group (DBG) at Harvard University is an interdisciplinary team of biologists, physicists, engineers and material scientists actively researching the structure/function relationship in cardiac, neural, and vascular smooth muscle tissue engineering.
Read More »

What's New

2019 MRS Conference Award Winners December 10th, 2019

Congratulations to Dr. Luke MacQueen and Dr. John Zimmerman for the Best Poster and Best Poster Nominee awards at the 2019 MRS in Boston!

Luke MacQueen
John Zimmerman

DBG Alumni Awarded ERC Starting Grant November 12th, 2019

Congratulations to DBG alumni Francesco Pasqualini (University of Pavia, Italy) and Ben Maoz (Tel Aviv University, Israel), and longtime associate Maximilian Emmert (Universität Zürich, Switzerland), for being awarded the prestigious ERC Starting Grant this year!

Farewell Seungkuk! September 5th, 2019

Congratulations to Dr. Seungkuk Ahn, who has accepted a position as a Postdoctoral Fellow in the Biophysics Group in ETH Zürich with Professor Daniel J. Müller. Seungkuk joined the Disease Biophysics Group as a graduate student in 2012, and departed for Switzerland this past month. Congratulations Seungkuk!

Thank you to our 2019 summer students! September 5th, 2019

Thank you to the undergraduate students who visited our lab this summer. We wish you all the best in your future endeavors!
 

Riley Flores
Rudy Gabardi
James Ikeda
Christina Pizza
Danielle Gamboa
Carlos Marquez

Welcome 2019 Summer Students! June 17th, 2019

The Disease Biophysics Group welcomes our 2019 summer students! From left to right: Rudy Gabardi, Carlos Marquez, James Ikeda, Christina Pizza, Danielle Gamboa, and Riley Flores. Best of luck on your summer research projects!

Featured Publications

130. O’Connor BB, Grevesse T, Zimmerman JF, Ardoña HAM, Jimenez JA, Bitounis D, Demokritou P, Parker KK.Human brain microvascular endothelial cell pairs model tissue-level blood–brain barrier function. Integrative Biology. 2020 Jan 05; doi: 10.1093/intbio/zyaa005

129. Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, Novak R, Cronce M, Huffstater T, Jeanty SSF, Ingram M, Chalkiadaki A, Chou DB, Marquez S, Delahanty A, Jalili-Firoozinezhad S, Sontheimer-Phelps A, Swenor B, Levy O, Parker KK, Przekwas A, Ingber DE. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nature Biomedical Engineering. 2020 Jan 27; doi: 10.1038/s41551-019-0498-9

128. Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A, Maoz BM, Jeanty SSF, Somayaji MR, Burt M, Calamari E, Chalkiadaki A, Cho A, Choe Y, Chou DB, Cronce M, Dauth S, Divic T, Fernandez-Alcon J, Ferrante T, Ferrier J, FitzGerald EA, Fleming R, Jalili-Firoozinezhad S, Grevesse T, Goss JA, Hamkins-Indik T, Henry O, Hinojosa C, Huffstater T, Jang KJ, Kujala V, Leng L, Mannix R, Milton Y, Nawroth J, Nestor BA, Ng CF, O’Connor B, Park TE, Sanchez H, Sliz J, Sontheimer-Phelps A, Swenor B, Thompson G, Touloumes GJ, Tranchemontagne Z, Wen N, Yadid M, Bahinski A, Hamilton GA, Levner D, Levy O, Przekwas A, Prantil-Baun R, Parker KK, Ingber DE. Robotic fluidic coupling and interrogation of multiple vascularied organ chips. Nature Biomedical Engineering. 2020 Jan 27; doi: 10.1038/s41551-019-0497-x

127. Touloumes GJ, Ardoña HAM, Casalino EK, Zimmerman JF, Chantre CO, Bitounis D, Demokritou P, Parker KK. Mapping 2D-and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. Nanoimpact. 2020 Jan 13; doi: 10.1016/j.impact.2020.100208.

126. Chantre CO, Gonzalez GM, Ahn S, Cera L, Campbell PH, Hoerstrup SP, Parker KK. Porous Biomimetic Hyaluronic Acid and Extracellular Matrix Protein Nanofiber Scaffolds for Accelerated Cutaneous Tissue Repair. ACS Applied Materials and Interfaces. 2019 Nov 22; doi: 10.1021/acsami.9b17322.

125. Garbern JC, Helman A, Sereda R, Sarikhani M, Ahmed A, Escalante GO, Ogurlu R, Kim SL, Zimmerman JF, Cho A, MacQueen LM, Bezzerides VJ, Parker KK, Melton DA, Lee RT.Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells via p53-Induced Quiescence. Circulation. 2019 Nov 19; doi: https://doi.org/10.1161/CIRCULATIONAHA.119.044205.

124. MacQueen LM, Alver CG, Chantre CO, Ahn S, Cera L, Gonzalez GM, O’Connor BB, Drennan DJ, Peters MM, Motta SE, Zimmerman JF, Parker KK. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. npj Science of Food. 2019 Oct 21; https://doi.org/10.1038/s41538-019-0054-8.